Header

Shop : Weiterempfehlung

Shop
Weiterempfehlung
48,80 €
ISBN 978-3-8440-8263-0
Paperback
172 Seiten
77 Abbildungen
249 g
21 x 14,8 cm
Englisch
Dissertation
Oktober 2021
Ilkin Alkhasli
Multiscale Modelling of Plasma Spraying
Atmospheric plasma spraying is a versatile technology that can produce coatings with a wide range of characteristics. Adapting the coating characteristics to the increasing demands of modern industrial applications is an ongoing research topic. Modelling and simulation increase the understanding of the process dynamics and have the potential to predict the coating properties. Correlating the coating properties with the process parameters is an essential step for a modelling approach to fulfil this potential. Due to its complexity, it is practically impossible to describe the whole process in a single model. However, based on the nature and the scale of the governing physical phenomena, the plasma spraying process can be divided into constituting sub-processes, which can then be described by separate models. Available models of isolated sub-processes in the literature are not able to derive the coating properties from the process parameters. This thesis is therefore devoted to creating a predictive simulation chain by combining the models of atmospheric plasma spraying sub-processes with each other and thus connecting the coating properties with the process parameters.

The simulation chain includes the established models of the sub-processes, models developed in this work to describe previously neglected phenomena and the coupling strategies designed to link separate models together. The existing validated model of the plasma generator was utilized, while the discrete particle jet model was developed further to include the temperature gradients within individual particles. This model assumes perfectly homogenous and spherical particles. To account for realistic particle morphologies, a separate model that can resolve particles with complex shape was developed. By incorporating this model into the gradient particle jet model, the multiscale particle jet model were developed. Since the temperature gradients within the particles cannot be captured experimentally, the model was validated indirectly by correlating particle temperatures with experimentally obtained coating thickness distributions. A particle impact model was generated to simulate the coating formation by multiple particle impacts. This model can track the cooling rates of the individual particles as well. A multi-scale coupling strategy enabled linking the multiscale particle jet with the coating formation model. Finally, a model for the determination of the effective thermal conductivity of the simulated coatings was implemented as the final link in the simulation chain. In addition to increasing the understanding of distinct aspects of the process, the simulation chain has laid the foundation of a predictive tool that can be deployed for designing new coating systems.
Schlagwörter: plasma spraying; modelling; simulation; coating
Schriftenreihe Oberflächentechnik
Herausgegeben von Prof. Dr.-Ing. K. Bobzin, Aachen
Band 70
Die Weiterempfehlung wird per E-Mail an die von Ihnen unten angegebene Adresse verschickt.
Die mit einem * gekennzeichneten Felder sind Pflichtfelder! Bitte füllen Sie diese unbedingt vollständig aus.
Absender
Empfänger
Sicherheitscode

Hinweise zum Datenschutz:
Ihre E-Mail-Adresse, Ihr Name sowie die E-Mail-Adresse des Empfängers werden ausschließlich zu Übertragungszwecken temporär gespeichert, um den Adressaten über den Absender zu informieren bzw. um im Fall eines Übertragungsfehlers eine Benachrichtigung zu übermitteln.

Bitte beachten Sie, dass die unaufgeforderte Zusendung einer Empfehlung vom Empfänger als störend empfunden werden kann. Mit diesem Angebot dürfen Sie eine Empfehlung nur dann aussprechen, wenn Sie wissen oder sicher davon ausgehen können, dass der Empfänger mit der Zusendung der Empfehlung einverstanden ist.

Shaker Verlag GmbH
Am Langen Graben 15a
52353 Düren
  +49 2421 99011 9
Mo. - Do. 8:00 Uhr bis 16:00 Uhr
Fr. 8:00 Uhr bis 15:00 Uhr
Kontaktieren Sie uns. Wir helfen Ihnen gerne weiter.
Social Media