#### **Samuel Mann**

# Datenbasierte Erfassung und Regelung transienter Qualitätsmerkmale beim Metall-Schutzgasschweißen



Aachener Berichte Fügetechnik Herausgeber: Prof. Dr.-Ing. U. Reisgen

# "Datenbasierte Erfassung und Regelung transienter Qualitätsmerkmale beim Metall-Schutzgasschweißen"

"Data-based Acquisition and Control of Transient Quality Features in Gas Metal Arc Welding"

Von der Fakultät für Maschinenwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von
Samuel Micha Mann

Berichter: Universitätsprofessor Dr.-Ing. Uwe Reisgen

Universitätsprofessor Dr.-Ing. Michael Rethmeier

Tag der mündlichen Prüfung: 26.09.2023

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar.

#### **Samuel Mann**

## Datenbasierte Erfassung und Regelung transienter Qualitätsmerkmale beim Metall-Schutzgasschweißen



Aachener Berichte Fügetechnik Herausgeber: Prof. Dr.-Ing. U. Reisgen

#### Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: D 82 (Diss. RWTH Aachen University, 2023)

Copyright Shaker Verlag 2024 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-9478-7 ISSN 0943-9358

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren

Telefon: 02421 / 99 0 11 - 0 • Telefax: 02421 / 99 0 11 - 9

Internet: www.shaker.de • E-Mail: info@shaker.de

#### **Danksagung**

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Schweißtechnik und Fügetechnik (ISF) der Rheinisch-Westfälischen Technischen Hochschule Aachen. Gefördert wurde diese Arbeit durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen der Exzellenzstrategie des Bundes und der Länder – EXC-2003 Internet of Production – 390621612.

Ich möchte zunächst dem Institutsleiter, Herrn Prof. Dr.-Ing. Uwe Reisgen, herzlich für die Betreuung und Möglichkeit sowie den wissenschaftlichen Freiraum für die Erstellung dieser Arbeit danken. Darüber hinaus danke ich Herrn Prof. Dr.-Ing Michael Rethmeier, sowie Frau Prof. Dr.-Ing. Kirsten Bobzin für die Begutachtung meiner Arbeit und den Vorsitz der Doktorprüfung.

Des Weiteren möchte ich meinen Oberingenieuren Rahul Sharma und Konrad Willms für die bereichernden Diskussionen zu dieser Arbeit danken und für die zahlreichen, wertvollen Erfahrungen die ich in der Lichtbogenabteilung des ISF machen durfte. Für die inspirierenden Gespräche, die Einführung in die Lichtbogenprozesse und die vielen fröhlichen Augenblicke möchte ich Guido Buchholz herzlich danken. Ein großer Dank gilt meinen Kollegen Martin Christ und Lukas Oster, die mich über die Jahre am ISF begleitet und die Zeit, wie kaum jemand anderes nachhaltig geprägt haben. Dazu gehören auch Philipp Lozano, Benjamin Ebert und Alexander Biber mit denen ich das Büro, viele intensive Diskussionen und noch mehr Freude teilen durfte. Ein besonderer Gruß geht an Oliver Engels, Benjamin Gerhards, Jens Lotte und letztendlich die gesamte Belegschaft, die Teil einer unvergesslichen Zeit am ISF war.

Für die kritische Durchsicht danke ich Lars Stein zur Strukturierung der Arbeit, Oleg Mokrov zu den physikalischen Zusammenhängen des Metall-Schutzgasschweißen sowie Sebastian Stemmler, Muzaffer Ay und Dominik Scheurenberg zur Regelungstechnik.

An dieser Stelle möchte ich mich auch herzlich bei den weiteren Kollegen des Exzellenzcluster Internet of Production für die Zusammenarbeit und zahlreiche, wertvolle Impulse bedanken. Darunter insbesondere Jan Pennekamp, Tobias Brockhoff, Mohamed Behery und Mark Sanders.

Für ihre tatkräftige Unterstützung gilt mein großer Dank Simon Oster, Julian Blakert, Lorenz Kolling und den tapferen Studierenden, die einen Beitrag zu dieser Arbeit geleistet haben.

Nicht zuletzt möchte ich mich zutiefst bei meinen Eltern, Geschwistern, Familie und Freunden bedanken, die mich stets unterstützt und an mich geglaubt haben. Besonderer Dank gilt jedoch meiner Frau Esther für ihren treuen Rückhalt, Rat und Humor. Abschließend bleibt nur noch mein ehrlicher Dank an Jesus.

Gewidmet meinem Papa Wilfried

Auszüge dieser Arbeit wurden bereits in folgenden Veröffentlichungen publiziert: [1 bis 6]

<u>I Inhaltsverzeichnis</u>

#### I Inhaltsverzeichnis

| l  | Inhalts    | sverzeichnis                                                | I   |
|----|------------|-------------------------------------------------------------|-----|
| II | Abbilo     | lungsverzeichnis                                            | III |
| Ш  | Tabell     | enverzeichnis                                               | X   |
| IV | Forme      | elzeichen und Abkürzungen                                   | XI  |
| ٧  | Kurzfa     | nssung                                                      | XVI |
| 1  | Einleit    | ung                                                         | 1   |
| (  | Qualitätso | definitionen beim Metall-Schutzgasschweißen                 | 2   |
| 2  | Stand      | der Technik                                                 | 4   |
| :  | 2.1 Me     | etall-Schutzgasschweißen                                    | 4   |
|    | 2.1.1      | Prozesswirkstrecke                                          | 5   |
|    | 2.1.2      | Werkstoffübergang und Schweißnahtausbildung                 | 10  |
|    | 2.1.3      | Prozessentwicklung und Steuerung des Werkstoffübergangs     | 13  |
|    | 2.1.4      | Zwischenfazit zum Metall-Schutzgasschweißen                 | 18  |
| :  | 2.2 Se     | nsor- und modellbasierte Erfassung/Regelung der Qualität    | 18  |
|    | 2.2.1      | Primäre und sekundäre Sensorik                              | 19  |
|    | 2.2.2      | Modellbildung                                               | 25  |
|    | 2.2.3      | Merkmalsgewinnung                                           | 28  |
|    | 2.2.4      | Qualitätsregelungen in der Produktionstechnik               | 31  |
|    | 2.2.5      | Zwischenfazit zur sensor- und modellbasierten Erfassung/Reg | _   |
|    |            | Qualität                                                    | 34  |
| 3  | Proble     | emstellung, Zielsetzung und Lösungskonzept                  | 36  |
| ;  | 3.1 Zie    | elsetzung                                                   | 37  |
| ,  | 3.2 Lö     | sungskonzept der datenbasierten Qualitätsregelung           | 38  |

II Inhaltsverzeichnis I

| 4 | Heran   | gehensweisegehensweise                                    | 40  |
|---|---------|-----------------------------------------------------------|-----|
| 5 | Ergeb   | nisse                                                     | 43  |
|   | 5.1 Er  | fassung der transienten Prozess- und Produktqualität      | 43  |
|   | 5.1.1   | Prozessmerkmale mittels hybrider Prozessbildsensorik      | 43  |
|   | 5.1.2   | Prozessmerkmale aus elektrischen und optischen Zeitreihen | 62  |
|   | 5.2 Fa  | llstudien zur datenbasierten Qualitätsregelung            | 72  |
|   | 5.2.1   | Fallstudie zur Produktqualität: Kehlnahtflanken           | 72  |
|   | 5.2.2   | Fallstudie zur Prozessqualität: Schweißrauchemission      | 98  |
|   | 5.3 Dis | skussion der datenbasierten Qualitätsregelung             | 128 |
| 6 | Zusan   | nmenfassung                                               | 131 |
|   | 6.1 Fa  | zit und Ausblick                                          | 134 |
| 7 | Anhar   | ng                                                        | 136 |
| 8 | Litera  | urverzeichnis                                             | 137 |
|   | 8.1 No  | ormen                                                     | 154 |

### II Abbildungsverzeichnis

| Abbildung 1-1:  | Qualitätsmerkmale beim MSG-Schweißen                                                                                                                                                                                | . 3 |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Abbildung 2-1:  | Schematische Schnittansicht des MSG-Prozesses mit prozessnahen Bauteilen des Schweißbrenners                                                                                                                        | . 4 |
| Abbildung 2-2:  | Schematische Schnittansicht der MSG-Prozesswirkstrecke                                                                                                                                                              | . 6 |
| Abbildung 2-3:  | Spektrum des MSG-Schweißlichtbogens, EN ISO 14175–<br>M21–ArC–18, EN ISO 14341-A-G 3Si1                                                                                                                             | . 8 |
| Abbildung 2-4:  | Elektrisches Ersatzschaltbild der MSG-Prozesswirkstrecke nach [27, 39]                                                                                                                                              | 10  |
| Abbildung 2-5:  | Einflüsse auf den Werkstoffübergang und die Schweißnahtausprägung                                                                                                                                                   | 11  |
| Abbildung 2-6:  | MSG-Werkstoffübergänge und Stabilitätsgrenzen in Anlehnung an [16] (Drahtelektrode: EN ISO 14341-A: G 3Si1, $\emptyset$ = 1,2 mm; Schutzgas: Ar = 65 %, He = 26,5 %, CO <sub>2</sub> = 8 %, O <sub>2</sub> = 0,5 %) | 14  |
| Abbildung 2-7:  | Historische MSG-Prozessentwicklung mit elektrischen Kennlinien und Kennlinienfeldern der Schweißgeräte (obere Zeile) und prozesstechnischer Nutzung (untere Zeile), Kennlinienfeld nach [65]                        | 15  |
| Abbildung 2-8:  | Gegenüberstellung von Sensorik, Merkmalsgewinnung und Modellbildung von Prozessdaten hin zu Qualitätsdaten                                                                                                          | 19  |
| Abbildung 2-9:  | Even/Odd-Funktion, Photonfocus HD1-D1312-80-G2;                                                                                                                                                                     | 22  |
| Abbildung 2-10: | Verknüpfungen von Anwendungen (grün), Art der<br>Bildverarbeitung (rot,orange) und Beleuchtung (blau, türkis)<br>für optische Sensorik je betrachteter Veröffentlichung                                             | 24  |
| Abbildung 2-11: | Schweißstrom- (rot) und Schweißspannungszeitreihe (blau), Kurzlichtbogen, $vD$ = 5 m/min, ISO 14175–M21–ArC–18, ISO 14341-A-G 3Si1                                                                                  | 29  |
| Abbildung 2-12: | Transformation und Extraktion zur Merkmalsgewinnung aus Zeitreihen                                                                                                                                                  | 29  |

| Abbildung 2-13: | Typische Bildverarbeitungsalgorithmen für MSG-Prozessbilder in konsekutiver Reihenfolge von links nach rechts                                                                                                         |    |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Abbildung 2-14: | : Regelungssystem nach DIN IEC 60050-351                                                                                                                                                                              |    |
| Abbildung 3-1:  | Konzept der datenbasierten Qualitätsregelung beim MSG-<br>Schweißen                                                                                                                                                   | 38 |
| Abbildung 4-1:  | Gliederung der Arbeitsinhalte                                                                                                                                                                                         | 40 |
| Abbildung 4-2:  | Auswahl komplementärer Fallstudien zur datenbasierten Qualitätsregelung                                                                                                                                               | 41 |
| Abbildung 5-1:  | Ergebnisübersicht zu Kapitel 5.1                                                                                                                                                                                      | 43 |
| Abbildung 5-2:  | Schematischer Versuchsaufbau der Prozessbildsensorik ohne Lasermodul                                                                                                                                                  | 44 |
| Abbildung 5-3:  | Versuchsaufbau der hybriden Prozessbildsensorik mit Lasermodul und DOE-Halter                                                                                                                                         | 44 |
| Abbildung 5-4:  | a) Lasermodul und DOE-Halter, b) Projizierte Laserlinien c) Projiziertes Punktmuster                                                                                                                                  | 45 |
| Abbildung 5-5:  | Konsekutive Bildverarbeitung zur Positionsbestimmung des Lichtbogenschwerpunktes aus vorlaufenden Prozessbildern                                                                                                      | 47 |
| Abbildung 5-6:  | Konsekutive Bildverarbeitung zur Bestimmung der horizontalen Position der Drahtelektode aus vorlaufenden Prozessbildern                                                                                               | 47 |
| Abbildung 5-7:  | Merkmale der Prozesszon e aus nachlaufenden Prozessbildern                                                                                                                                                            | 48 |
| Abbildung 5-8:  | Identifikation der Fugenart und Fugenposition bei verschiedenen Stoßarten, a)-c): vorlaufende Prozessbilder mit Laserprojektion, d)-f) Bildverarbeitung mit identifizierten Laserlinien (rot) und Suchfenstern (grün) | 50 |
| Abbildung 5-9:  | Versuchsaufbau mit vorlaufender Laserprojektion im a) T-Stoß, b) Stumpstoß und c) Überlappstoß                                                                                                                        | 50 |
| Abbildung 5-10: | Fehlerhafte Fugendetektion durch Schmelze, Spritzer oder unklare Kanten, a)-c): vorlaufende Prozessbilder mit                                                                                                         |    |

|                 | Laserprojektion, d)-f) Bildverarbeitung mit identifizierten  Laserlinien (rot) und Suchfenstern (grün)                                                                                                                                                                | 51 |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Abbildung 5-11: | Erkennungsraten der Fugenposition bei verschiedenen Stoß-<br>und Lichtbogenarten sowie Abständen der Laserlinie zur<br>Drahtelektrodenachse                                                                                                                           | 53 |
| Abbildung 5-12: | Bestimmung der Schweißnahthöhe mit Referenzblech a) und Schweißnaht b) mit Suchlinien (blau) und Messpunkten (grün)                                                                                                                                                   | 54 |
| Abbildung 5-13: | Nachlaufende Prozessbilder mit a) einfacher Laserlinie (Prisma), b) dreifacher Laserlinie (DOE) und c) 17x17-Laser-Punktmuster (DOE)                                                                                                                                  | 56 |
| Abbildung 5-14: | Kurzschlussdauer und Kurzschlussrate über der mittleren Leistung,                                                                                                                                                                                                     | 57 |
| Abbildung 5-15: | Messung der Schweißnahthöhe mit a) einfacher Laserlinie (Prisma), b) dreifacher Laserlinie (DOE) und c) 17x17-Laser-Punktmuster (DOE)                                                                                                                                 | 58 |
| Abbildung 5-16: | Schweißnahtbilder                                                                                                                                                                                                                                                     | 59 |
| Abbildung 5-17: | Kombinierte Merkmalsgewinnung der a): Referenzschweißung, b) 1 mm Fehlpositionierung, c) 4 mm Fehlpositionierung am Überlappstoß                                                                                                                                      | 60 |
| Abbildung 5-18: | Schematischer Versuchsaufbau zur Erfassung von elektrischen und optischen Zeitreihen                                                                                                                                                                                  | 62 |
| Abbildung 5-19: | Spektrum des Schweißlichtbogens und spektrale Sensitivität (blau: Hamamatsu G1961 GaP, rot: Hamamatsu S5973-01 mit 650 nm Kantenfilter)                                                                                                                               | 63 |
| Abbildung 5-20: | Photodiodenplatine mit TI OPA 380 (links) und Sensorsystem (rechts)                                                                                                                                                                                                   | 63 |
| Abbildung 5-21: | Elektrische (oben; rot: Strom; blau: Spannung) und optische (unten; rot: 760 nm; blau: 440 nm) Prozesszeitreihen mit eingezeichneter Perioden-, Lichtbogenbrenn- und Kurzschlussdauer; $vD = 5$ m/min; EN ISO 14341-A: G 3Si1; Ø = 1,2 mm; ISO 14175 – M21 – ArC – 18 | 65 |

| Abbildung 5-22: | Darstellung der Merkmale über den Zeitschnipseln $Ei, Ei+1$ und dem Prozesszustand $\emph{\textbf{E}}$                       | . 66 |
|-----------------|------------------------------------------------------------------------------------------------------------------------------|------|
| Abbildung 5-23: | Merkmalsreihen über den Kurzschlussperioden mit Übergang vom Referenzzustand zur Schutzgasstörung ab ca. 750 Prozessperioden | . 67 |
| Abbildung 5-24: | Merkmale des Prozesszustandes: Referenz                                                                                      | . 68 |
| Abbildung 5-25: | Merkmale des Prozesszustandes: Schutzgasstörung                                                                              | . 68 |
| Abbildung 5-26: | Ergebnisübersicht zu Kapitel 5.2                                                                                             | . 72 |
| Abbildung 5-27: | Asymmetrische Kehlnaht nach DIN EN ISO 5817                                                                                  | . 73 |
| Abbildung 5-28: | Zusammenhang zwischen Lichtbogenschwerpunkt und Flankengeometrie                                                             | . 74 |
| Abbildung 5-29: | Bewegung des TCP entlang der Kehlnahtfuge                                                                                    | . 75 |
| Abbildung 5-30: | Makroschliffe zur Position a) A08 und b) A19                                                                                 | . 76 |
| Abbildung 5-31: | a) Odd-Halbbild zur Identifikation der Schliffposition A08, b) Even-Halbbild zur Ermittlung von $xL$ und $xD$                | . 77 |
| Abbildung 5-32: | Gewichtung der Zwischenbilder über triangulären 9-Punkt-<br>Filter                                                           | . 77 |
| Abbildung 5-33: | Flankenverhältnis ohne Kerbe über relativen<br>Lichtbogenschwerpunkt                                                         | . 78 |
| Abbildung 5-34: | Flankenverhältnis mit Kerbe über relativen<br>Lichtbogenschwerpunkt                                                          | . 79 |
| Abbildung 5-35: | Relative Flankendifferenz ohne Kerbe über rel. Lichtbogenschwerpunkt                                                         | . 80 |
| Abbildung 5-36: | Relative Flankendifferenz mit Kerbe über rel. Lichtbogenschwerpunkt                                                          | . 80 |
| Abbildung 5-37: | Trajektorien-Oberflächen mit a) Ebene, b) 90°-Öffnung und c) Radius mit lokalem Koordinatensystem in der xy-Ebene            | . 81 |
| Abbildung 5-38: | Schema der Kehlnahtflanken-Regelung                                                                                          | 83   |

| Abbildung 5-39: | Blockschaltbild Kehlnahtflanken-Regelung                                                                            | 83 |
|-----------------|---------------------------------------------------------------------------------------------------------------------|----|
| Abbildung 5-40: | Flussdiagramm zur Datensynchronisation im Regelungszyklus .                                                         | 84 |
| Abbildung 5-41: | Auswertung des Laserlinien-Scans zur Identifikation der Flankenlängen                                               | 86 |
| Abbildung 5-42: | Sprungantworten des relativen Lichtbogenschwerpunktes bei verschiedenen Trajektorien-Variablen, Schweißposition: PB | 87 |
| Abbildung 5-43: | Schweißnähte der Störgrößenunterdrückung; SLB; PA                                                                   | 88 |
| Abbildung 5-44: | Schweißnähte der Störgrößenunterdrückung; SLB; PB                                                                   | 88 |
| Abbildung 5-45: | Schweißnähte der Störgrößenunterdrückung; SLB; PC                                                                   | 88 |
| Abbildung 5-46: | Rel. Lichtbogenschw. und Trajektorien-Variable, SLB; PA;<br>Versuch 1                                               | 90 |
| Abbildung 5-47: | Rel. Lichtbogenschw. und Trajektorien-Variable; SLB; PA; Versuch 2                                                  | 90 |
| Abbildung 5-48: | Relative Flankendifferenz und Flankensumme; SLB; PA; Versuch 1                                                      | 90 |
| Abbildung 5-49: | Relative Flankendifferenz und Flankensumme; SLB; PA;<br>Versuch 2                                                   | 91 |
| Abbildung 5-50: | Flankenlängen; SLB; PA; Versuch 1                                                                                   | 91 |
| Abbildung 5-51: | Flankenlängen; SLB; PA; Versuch 2                                                                                   | 91 |
| Abbildung 5-52: | Schweißnähte der Störgrößenunterdrückung; KLB; PA                                                                   | 93 |
| Abbildung 5-53: | Schweißnähte der Störgrößenunterdrückung; KLB; PB                                                                   | 93 |
| Abbildung 5-54: | Schweißnähte der Störgrößenunterdrückung; KLB; PC                                                                   | 93 |
| Abbildung 5-55: | Prozessbilder zum Sprüh- und Kurzlichtbogen bei 380 mm,<br>Versuch 1                                                | 94 |
| Abbildung 5-56: | Rel. Lichtbogenschw. und Trajektorien-Variable; KLB; PA;<br>Versuch 1                                               | 95 |

| Abbildung 5-57: | Rel. Lichtbogenschw. und Trajektorien-Variable; KLB; PA; Versuch 2                                   | . 95 |
|-----------------|------------------------------------------------------------------------------------------------------|------|
| Abbildung 5-58: | Relative Flankendifferenz und Flankensumme; KLB; PA; Versuch 1                                       | . 95 |
| Abbildung 5-59: | Relative Flankendifferenz und Flankensumme; KLB; PA;<br>Versuch 2                                    | . 96 |
| Abbildung 5-60: | Flankenlänge; KLB; PA; Versuch 1                                                                     | . 96 |
| Abbildung 5-61: | Flankenlänge; KLB; PA; Versuch 2                                                                     | . 96 |
| Abbildung 5-62: | Bildungsmechanismen von Schweißrauch nach [62]                                                       | . 99 |
| Abbildung 5-63: | Versuchsaufbau zur Erfassung der <i>FER</i> nach DIN EN ISO 15011-1                                  | 101  |
| Abbildung 5-64: | Gleichverteilte Versuchsparameter über<br>Drahtvorschubgruppen, Dynamik- und Lichtbogenkorrektur     | 102  |
| Abbildung 5-65: | Zeitreihenausschnitt zu Schweißstrom (rot) und Schweißspannung (blau), $vD$ = 5 m/min                | 103  |
| Abbildung 5-66: | Boxplot zur FER über dem Drahtvorschub                                                               | 104  |
| Abbildung 5-67: | Boxplot zur relativen Schweißrauchemission über dem Drahtvorschub                                    | 105  |
| Abbildung 5-68: | FER-Karte zu mittlerem Strom und mittlere Spannung                                                   | 106  |
| Abbildung 5-69: | FER über mittlerer Leistung mit Funktionsgraph zu Modell FERA                                        | 108  |
| Abbildung 5-70: | Residuenverteilung (links) und Histogramm der normalisierten Residuen (rechts) zu Modell <i>FERA</i> | 109  |
| Abbildung 5-71: | Gegenüberstellung der berechneten und gemessene <i>FER</i> zu Modell <i>FERA</i>                     | 109  |
| Abbildung 5-72: | Gruppierung im mittleren Strom; mittlere Prozessleistung:                                            | 110  |

| Abbildung 5-73: | Gegenüberstellung der berechneten und gemessene FER zu Modell FERB                                                       | 111 |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-----|
| Abbildung 5-74: | FER über mittlerer Spannung mit Funktionsgraph zu Modell FERC                                                            | 112 |
| Abbildung 5-75: | Residuenverteilung (links) und Histogramm der normalisierten Residuen (rechts) zu Modell <i>FERC</i>                     | 113 |
| Abbildung 5-76: | Gegenüberstellung der berechneten und gemessene FER zu Modell FERC                                                       | 113 |
| Abbildung 5-77: | Modellierte FER (links) und Residuen (rechts) über gemessenen FER; grau: Modelldatensatz; grün: Testdatensatz            | 114 |
| Abbildung 5-78: | Mittlere Prozessleistung über prozentualer Abweichung; grau: Modelldatensatz; grün: Testdatensatz                        | 115 |
| Abbildung 5-79: | Vergleich des <i>R</i> 2 auf Testdatensatz der multiplen linearen Regression (MLR) mit XGBoost, LSTM [190] und GPR [191] | 116 |
| Abbildung 5-80: | FER-Karte mit Umschlag der Standardabweichung der Periodendauer über mittlerer Leistung je Drahtvorschub                 | 117 |
| Abbildung 5-81: | FER über mittlerer Spannung ab 7 kW mittlerer Leistung und mit Funktionsgraph zu Modell FERC                             | 118 |
| Abbildung 5-82: | Schema der FER-Regelung                                                                                                  | 119 |
| Abbildung 5-83: | Blockschaltbild des FER-Regelkreises                                                                                     | 120 |
| Abbildung 5-84: | Flussdiagramm zur Datensynchronisation im Regelungszyklus                                                                | 121 |
| Abbildung 5-85: | Sprungantworten aus verschiedenen Start-Parametern                                                                       | 123 |
| Abbildung 5-86: | Schweißnahtbilder der Start- und FER-minimierten Parameter.                                                              | 124 |
| Abbildung 5-87: | Prozentuale Reduktion der Schweißrauchemission                                                                           | 126 |
| Abbildung 5-88: | Korrigiertes Konzept zur datenbasierten Qualitätsregelung beim MSG-Schweißen                                             | 129 |
| Abbildung 6-1:  | Struktur der Arbeit                                                                                                      | 131 |

#### III Tabellenverzeichnis

| Tabelle 2-1: | Spektrale Sensitivität verschiedener Halbleitermaterialien nach [88] | . 21 |
|--------------|----------------------------------------------------------------------|------|
| Tabelle 5-1: | Schweißparameter                                                     | . 59 |
| Tabelle 5-2: | Versuchsergebnisse verschiedener Projektionsmuster                   | . 60 |
| Tabelle 5-3: | Verwendete Photodioden                                               | . 62 |
| Tabelle 5-4: | Übersicht der Datenverteilung verschiedener Prozesszustände [3]      | . 69 |
| Tabelle 5-5: | Erzieltes F-Maß verschiedener Sensor-Kombinationen, Datensatz A [3]  | . 70 |
| Tabelle 5-6: | Konfusionsmatrix verschiedener Prozesszustände, Datensatz B [3]      | . 71 |
| Tabelle 5-7: | Modellgüte der trainierten MLP [3]                                   | . 71 |
| Tabelle 5-8: | Schweißrauchemissionen der Start- und FER-minimierten Parameter      | 125  |
| Tabelle 7-1: | Schweißparameter und Randbedingungen                                 | 136  |
| Tabelle 7-2: | Hyperparameteroptimierung mit "random search" Algorithmus [3]        | 136  |

#### IV Formelzeichen und Abkürzungen

a Parameter, a-Maß

A Ampere

 $\alpha$  Schrittweite

APS Active pixel sensor

Ar Argon

A<sub>S</sub> Parametermatrix der Schichtfunktion

b Parameterbit Binary digit

*b*<sub>S</sub> Parameter der Schichtfunktion

c Parameter

CCD Charge-coupled device

CMOS Complementary metal-oxide-semiconductor

CMT Cold metal transfer
CO<sub>2</sub> Kohlenstoffdioxid

CVT Central Voronoi Tesselation

DIN Deutsches Institut für Normung

DOE Diffraktives optisches Element

Ø [mm] Durchmesser Drahtelektrode

DVS Deutscher Verband für Schweißen und verw. Verfahren e. V.

*E* Zeitschnipsel

E Quantitativer Prozesszustand

EDACC Evaporation-determined model for arc-cathode coupling

EN Europäische Norm

F F-Maß

 $F_{1,2}$  Flankenverhältnis ohne Kerbe  $F_{1,2}$  Flankenverhältnis mit Kerbe

 $F_{D_{1,2}}$  Relative Flankendifferenz ohne Kerbe

 $F_{D_{1,2}}$  Relative Flankendifferenz mit Kerbe

FER [mg/s] Fume emission rate

 $FER_A$  [mg/s] Fume emission rate Modell A  $FER_B$  [mg/s] Fume emission rate Modell B  $FER_C$  [mg/s] Fume emission rate Modell C

 $FER_M$  [mg/s] Fume emission rate Gesamtmodell

| $FER_{min}$  | [mg/s] | Minimale fume emission rate                 |
|--------------|--------|---------------------------------------------|
| $FER_{rel}$  | [%]    | Relative fume emission rate                 |
| $f_{KNN}(x)$ |        | Modellfunktion künstliches neuronales Netz  |
| $f_{LR}(x)$  |        | Modellfunktion                              |
| $f_N$        |        | Anzahl falsch negativer Fälle               |
| $f_P$        |        | Anzahl falsch positiver Fälle               |
| fps          |        | Frames per second                           |
| $f_{S}(x)$   |        | Schichtfunktion des neuronalen Netzes       |
| GPR          |        | Gauß-Prozess-Regression                     |
| $g_S(x)$     |        | Aktivierungsfunktion der Schichtfunktion    |
| h            | [mm]   | Kehlnaht-Abweichung                         |
| HDR          |        | High dynamic range                          |
| He           |        | Helium                                      |
| Hz           |        | Herz                                        |
| i            |        | Indexvariable                               |
| I            | [A]    | Schweißstrom                                |
| I/O          |        | Input/Output                                |
| IARC         |        | International Agency for Research on Cancer |
| IEC          |        | International Electrotechnical Commission   |
| ILB          |        | Impulslichtbogen                            |
| ISO          |        | Internationale Organisation für Normung     |
| j            |        | Indexvariable                               |
| K            |        | Kelvin                                      |
| kHz          |        | Kiloherz                                    |
| $K_I$        |        | Integralanteil                              |
| KLB          |        | Kurzlichtbogen                              |
| KNN          |        | Künstliches neuronales Netz                 |
| $K_P$        |        | Proportionalanteil                          |
| kW           |        | Kilowatt                                    |
| LCVT         |        | Latin Centroidal Voronoi Tesselation        |
| LHS          |        | Latin Hypercube Sampling                    |
| Libo         | [V]    | Lichtbogenlängen Korrektur                  |
| LSTM         |        | Long short-term memory                      |
| m            |        | Schrittzahl                                 |
| Μ            |        | Merkmal                                     |

m Meter

m% Massenprozent MAG Metall-Aktivgas

MHz Megaherz

MIG Metall-Inertgas

min Minute

MLP Multilayer Perceptron

MLR Multiple lineare Regression

mOhm Milliohm

ms Millisekunde

MSE Mean squared error MSG Metall-Schutzgas

mW Milliwatt

n Größter Index

n negative Dotierung

NI National Instruments

nm Nanometer

O<sub>2</sub> Molekularer Sauerstoff

P Genauigkeit

p positive Dotierung
PA Wannenposition

PB Horizontal-Vertikalposition

PC Querposition

PI Proportional-integral

PID Proportional-integral-derivative

 $P_{krit}$  [kW] Kritische Leistung

% Prozent

p-Wert beobachtetes Signifikanzniveau

px Pixel

r Residuum, Fehler

 $r_P$  Anzahl richtig positiver Fälle

R Trefferquote

 $R_A$  [Ohm] Widerstand Anodenfallgebiet  $R_D$  [Ohm] Widerstand freies Drahtende  $R_K$  [Ohm] Widerstand Kathodenfallgebiet

| $R_L$                      | [Ohm]     | Widerstand Lichtbogensäule                    |
|----------------------------|-----------|-----------------------------------------------|
| $R_T$                      | [Ohm]     | Widerstand Tropfendepot                       |
| $R_{\ddot{\mathrm{U}}}$    | [Ohm]     | Widerstand Übergang                           |
| $r^2$                      |           | Fehlerquadrat                                 |
| $R^2$                      |           | Bestimmtheitsmaß                              |
| $ ho_{Draht}$              | [mg/mm³]  | Dichte Drahtelektrode                         |
| RMD                        |           | Regulated metal deposition                    |
| ROI                        |           | Region of interest                            |
| s                          |           | Sekunde                                       |
| $\sigma_T$                 |           | Standartabweichung der Periodendauer          |
| $\sigma_{Z_{Abw}}$         |           | Standartabweichung der relativen Abweichung   |
| Sl                         | [px]      | Suchlinien                                    |
| SLB                        |           | Sprühlichtbogen                               |
| $Sl_K$                     | [px]      | Suchkanten                                    |
| STT                        |           | Surface Tension Transfer                      |
| t                          | [ms], [s] | Zeit                                          |
| $t_T$                      | [mm]      | Trajektorien-Variable                         |
| TCP                        |           | Tool center point                             |
| $T_K$                      | [ms]      | Kurzschlussdauer                              |
| $T_L$                      | [ms]      | Lichtbogenbrenndauer                          |
| $T_P$                      | [ms]      | Dauer der Prozessperiode                      |
| TRGS                       |           | Technische Regeln für Gefahrstoffe            |
| U                          | [V]       | Schweißspannung                               |
| ULB                        |           | Übergangslichtbogen                           |
| V                          |           | Volt                                          |
| $v_D$                      | [m/min]   | Drahtvorschub                                 |
| $v_{\scriptscriptstyle S}$ | [m/min]   | Schweißgeschwindigkeit                        |
| W                          |           | Watt                                          |
| $W_F$                      |           | Wertebereich Flankenlängen                    |
| WIG                        |           | Wolfram-Inertgasschweißen                     |
| x                          |           | Unabhängige Variable, Input                   |
| $x_D$                      | [px]      | Position Drahtelektrode                       |
| $x_{hor}$                  | [mm]      | Horizontale Koordinate Kehlnahtfuge           |
| $x_{hor_0}$                | [mm]      | Horizontaler Ursprung Trajektorien-Oberfläche |
| $x_L$                      | [px]      | Position Lichtbogen                           |

| $x_{L-D}$   | [px] | Relativer Lichtbogenschwerpunkt             |
|-------------|------|---------------------------------------------|
| y           |      | Abhängige Variable, Output                  |
| $y_{ver}$   | [mm] | Vertikale Koordinate Kehlnahtfuge           |
| $y_{ver_0}$ | [mm] | Vertikaler Ursprung Trajektorien-Oberfläche |
| $z_1$       | [mm] | Horizontale Flankenlänge                    |
| $Z_2$       | [mm] | Vertikale Flankenlänge ohne Kerbe           |
| $z_2'$      | [mm] | Vertikale Flankenlänge mit Kerbe            |
| $Z_{Abw}$   | [mm] | relative Abweichung                         |
| $Z_{Ref}$   | [px] | Referenzlinie                               |
| $Z_S$       | [V]  | Zenerdiode Sperrwirkung                     |
| $Z_{Scan}$  | [px] | Schweißnahtmessung                          |
| $Z_{Sn}$    | [px] | Schweißnahthöhe                             |
| $Z_{Val}$   | [px] | Validierungsmessung                         |

XVI Kurzfassung V

#### **V** Kurzfassung

Das MSG-Schweißverfahren steht einem ausgeprägten Qualitäts- und damit Kompetenzanspruch gegenüber, der zurzeit nur mit hochausgebildeten, jedoch schlecht verfügbaren Fachkräften erfüllt werden kann. Das übergeordnete Ziel dieser Arbeit besteht somit darin, einen Teil der Prozesskompetenz in das Schweißsystem zu übertragen. Hierbei wurde die Einhaltung von Qualitätsmerkmalen der nichtflüchtigen Produktqualität (z. B. Schweißnahtgeometrie) und der flüchtigen Prozessqualität (z. B. Schweißrauchemission) in den Mittelpunkt gestellt. Mit der Erfassung der transienten Prozess- und Produktqualität sowie dem Schließen des Qualitätsregelkreises wurden daraufhin zwei Forschungsziele konkretisiert und anhand des eingeführten Konzeptes der datenbasierten Qualitätsregelung untersucht.

Der erste Teil dieser Arbeit betrachtet geeignete Sensorik sowie Datenverarbeitung zur Erfassung aussagekräftiger Prozessmerkmale, die für die statistische Modellbildung von Qualitätsmerkmalen genutzt werden können. Mit der hybriden Prozessbild-Sensorik wird ein Ansatz zur simultanen Erfassung von Prozessmerkmalen aus dem Bereich der Fuge, Prozesszone und Schweißnaht in einem Sensorsystem untersucht. Die Position der Fuge kann hierbei in einem Abstand von 1-2 mm zum Schmelzbad erfasst werden, womit sich der Vorlauffehler im Vergleich zu konventioneller, optischer Sensorik minimieren lässt. Elektrische und optische Zeitreihen zeichnen sich durch hohe Verfügbarkeit aus, erfordern jedoch ein ausgeprägtes Maß an Modellbildung. Mit der eingeführten Methodik zur Merkmalsgewinnung werden Zeitreihen nutzbar gemacht, und mittels neuronaler Netze zur Identifikation von Prozessabweichungen angewendet. Aufbauend auf der zuvor untersuchten Sensorik und Merkmalsgewinnung, wird im zweiten Teil die datenbasierte Qualitätsregelung anhand von zwei Fallstudien zur Regelung der Kehlnahtflanken (Produktqualität) und der Schweißrauchemission (Prozessqualität) demonstriert. In der Studie zur Schweißrauchemission wird die FER mittels Strom- und Spannungszeitreihen modelliert und über weite Leistungsbereiche des MSG-Standardprozesses um 12-40 % reduziert. Im Rahmen der datenbasierten Qualitätsregelung zur Kehlnahtgeometrie wird ein symmetrisches Flankenverhältnis in den Schweißpositionen PA, PB und PC mittels Prozessbildern geregelt. Anhand der Fallstudien kann das Konzept der datenbasierten Qualitätsregelung weiterentwickelt werden und bietet letztendlich eine methodische Grundlage für die Erfassung und Regelung weiterer Qualitätsmerkmale im Kontext der Schweißtechnik.

V Kurzfassung XVII

#### **Abstract**

Gas metal arc welding technology is confronted with a high demand for quality and competence, one that presently can only be fulfilled by highly trained but poorly available specialists. The overarching goal of this work is therefore to transfer parts of the process competence into the welding system. The focus is further on the compliance with quality features of the non-volatile product quality (weld seam geometry) and the volatile process quality (welding fume emission). With the acquisition of the transient process and product quality followed by the closing of the quality control loop, two research objectives are then specified and investigated using the introduced concept of data-based quality control.

The first part of this work considers suitable sensor technology as well as data processing to capture meaningful process features that can be used for statistical modeling of quality features. Hybrid process imaging is used to investigate an approach for simultaneously capturing process features from the joint, process zone, and weld seam in one sensor system. Here, the position of the joint can be detected at just 1-2°mm from the weld pool, thus minimizing the lead time error compared to conventional sensor systems. Electrical and optical time series are characterized by high availability yet require a distinct degree of modeling. With an introduced feature extraction methodology, time series are made usable, which is demonstrated using neural networks to identify process deviations. Building on the previously studied sensor technology and feature extraction, the second part demonstrates data-based quality control using two case studies for the control of fillet weld flanks (product quality) and welding fume emission (process quality). In the welding fume emission study, the FER is modeled using current and voltage time series and reduced by 12-40% over wide power ranges of the standard GMAW process. As part of the data-based quality control of the **fillet weld geometry**, a symmetrical flank ratio is controlled in the PA, PB and PC welding positions using process images. Based upon these case studies, the concept of data-based quality control is further developed and ultimately provides a methodological basis for the acquisition and control of further quality features.