

Erhöhung der Gewebegeschlossenheit zur Steigerung der Qualität von Verstärkungsfasergeweben

Christian Daniel Boltersdorf

"Erhöhung der Gewebegeschlossenheit zur Steigerung der Qualität von Verstärkungsfasergeweben"

"Increasing the Fabric Surface Coverage to Improve the Quality of Reinforcing Fibre Fabrics"

Von der Fakultät für Maschinenwesen
der Rheinisch-Westfälischen Technischen Hochschule Aachen
zur Erlangung des akademischen Grades eines Doktors
der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Christian Daniel Boltersdorf (geb. Vierkötter)

Berichter: Univ.-Prof. Prof. h. c. (MGU) Dr.-Ing. Dipl.-Wirt. Ing. Thomas Gries Assoc. Prof. Scott Edward Stapleton, Ph.D.

Tag der mündlichen Prüfung: 21.12.2023

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar.

Textiltechnik/Textile Technology

herausgegeben von Univ. Prof. Professor h. c. (MGU) Dr.-Ing. Dipl.-Wirt. Ing. Thomas Gries

Christian Daniel Boltersdorf

Erhöhung der Gewebegeschlossenheit zur Steigerung der Qualität von Verstärkungsfasergeweben

Shaker Verlag Düren 2024

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: D 82 (Diss. RWTH Aachen University, 2023)

Copyright Shaker Verlag 2024 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-9393-3 ISSN 1618-8152

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren

Telefon: 02421 / 99 0 11 - 0 • Telefax: 02421 / 99 0 11 - 9

Internet: www.shaker.de • E-Mail: info@shaker.de

Teile dieser Arbeit basieren auf den Ergebnissen der von mir betreuten studentischen Arbeiten. Eine bibliographische Auflistung befindet sich am Ende des Literaturverzeichnisses.

Danksagung

Die vorliegende Dissertation entstand im Rahmen meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Textiltechnik (ITA) der RWTH Aachen University. Ich möchte mich an dieser Stelle bei allen Personen bedanken, die zu dieser Arbeit beigetragen haben.

Meinem Doktorvater Univ.-Prof. Prof. h. c. (MGU) Dr.-Ing. Dipl.-Wirt. Ing. Thomas Gries danke ich für die Möglichkeit zur Promotion und Themenwahl, für die fachliche und persönliche Ausbildung sowie für die Schaffung eines sehr familienfreundlichen Arbeitsumfelds.

Meinem Zweitprüfer Assoc. Prof. Scott Edward Stapleton, Ph.D. danke ich für die Übernahme des Koreferats und den fachlichen Austausch sowie die motivierenden Gespräche. Univ.-Prof. Dr.-Ing. Kai-Uwe Schröder danke ich für die Übernahme des Vorsitzes meiner Promotionsprüfung.

Frau Christiane Cremer danke ich für ihre Unterstützung bei allen Literaturfragen und -suchen sowie für die freundlichen Gespräche. Außerdem danke ich ihr sowie Christoph Greb, Kai Klopp, Tallal Javied, Christopher Lenz, Wilhelm Boltersdorf und Kerstin Boltersdorf für das Korrekturlesen meiner Arbeit und die wertvollen Anmerkungen.

Meinem Projektpartner Jürgen Klimke der CARBO-TEX GmbH, Nordendorf danke ich für das Vertrauen und die hervorragende Kooperation in unserem spannenden Forschungsprojekt.

Ich danke allen meinen Studierenden und meinen studentischen Hilfskräften Fabian, Andreas, Maik, Sören, Leo, Simon, Sophie und Marvin für die Unterstützung bei zahlreichen Konstruktionen und Experimenten. Außerdem danke ich allen Mitarbeitenden des ITAs, die mich in meinen Projekten unterstützt haben. Stellvertretend möchte ich hier aus dem Webtechnikum Violetta, Dirk, Erika, Hans, Sabine und Eskil hervorheben, da wir besonders oft für meine Projekte zusammengearbeitet haben. Dem Prüflabor, unserer Mikroskopie und der E-Werkstatt danke ich für die Hilfe bei teils sehr ungewöhnlichen Anfragen.

Meinen Kolleginnen und Kollegen am ITA, vor allem aus meinem alten Bereich Flat Composite Reinforcements und meinem neuen Bereich Fabric Production sowie meinen Büro- und Nahfeldkolleginnen und -kollegen danke ich für den täglichen Austausch und das freundliche Arbeitsklima. Dank euch hat mir das Arbeiten während der Promotion sehr viel Spaß gemacht.

Meiner früheren Chefin zu meiner Zeit als studentische Hilfskraft, Britta Sköck-Hartmann, und meinem ersten Abteilungsleiter Christopher Lenz danke ich für meine Ausbildung am ITA. Durch euch habe ich so viel gelernt und mich persönlich weiterentwickeln können! Danke dafür und für eure bis heute andauernde, stets freundschaftliche Unterstützung.

Ganz besonders möchte ich mich bei meinen Freunden und meiner Familie bedanken. Meinen Eltern und Schwiegereltern sowie meinem Bruder danke ich für den Rückhalt und die Unterstützung im gesamten Lebensweg, besonders im Studium und während der letzten Jahre zur Promotion. Meiner Tochter Anna danke ich für ihre stets aufmunternde Frohnatur und ihre Lebensfreude. Meiner Frau Kerstin danke ich für ihre liebevolle und unermüdliche Geduld vor allem in den letzten Monaten und ihre stetige Motivation. Dein Fleiß und Ehrgeiz sind immer Vorbild für mich und ohne Dich hätte ich diese Dissertation nicht geschafft. Vielen Dank!

Düren, im Januar 2024

Christian Boltersdorf

Kurzfassung

In den Anwendungsfeldern Automobil sowie Luft- und Raumfahrt werden flache, geschlossene Gewebe benötigt, um das Leichtbaupotenzial optimal auszuschöpfen. Die makellose Produktqualität ist den Anwendern dabei sehr wichtig. Gewebe besitzen gegenüber Gelegen den Nachteil der Ondulation. Diese führt zur Reduktion der mechanischen Eigenschaften als auch optischen Mängeln (z.B. Lücken im Gewebe). Gespreizte Gewebe stellen hierfür eine Lösung dar. Allerdings existiert noch kein für KMU geeignetes Verfahren, mit dem Standardgewebe in einem zum Weben separaten Prozess je nach Kundenbedarf nachgespreizt werden können.

Ziel der vorliegenden Arbeit ist als erstes die Entwicklung eines Prüfsystems zur Bestimmung der Gewebegeschlossenheit. Als zweites wird ein Verfahren und eine Anlage zur Erhöhung der Geschlossenheit (das Gewebespreizen) entwickelt und bewertet. Sowohl das optische Prüfsystem als auch die Gewebespreizanlage im Labormaßstab werden nach jeweils passender Konstruktionsmethodik entwickelt und anschließend experimentell validiert. Die Kombination der Funktionsprinzipien ist so aussichtsreich, dass die Gewebespeizanlage auf Industriemaßstab skaliert und dabei verbessert werden kann.

Durch abschließende Versuche wird das Gewebespreizverfahren bewertet. Es werden zwei Gewebevarianten aus Carbonfasern mit üblichen Flächengewichten für die Anwendung im Automobil und den Bereichen Luft- und Raumfahrt hergestellt. Diese weisen jedoch gegenüber Standardgeweben folgende Geschlossenheiten auf: ein Gewebe mit 200 g/m² Flächengewicht und 99 % Geschlossenheit und ein Gewebe mit 160 g/m² Flächengewicht und der Geschlossenheit eines ungespreizten 200 g/m²-Gewebes (ca. 95 %). Das Aufspreizen der Rovings im Gewebe senkt die Ondulation und die Geschlossenheit der Oberfläche steigt. So können dünnere Einzellagen hergestellt werden und eine bessere Oberflächengüte erzielt werden.

Abstract

In the automotive and aerospace industries, thin fabrics with a high surface coverage are required in order to optimally exploit the potential for lightweight construction. Flawless product quality is very important to the customers. Compared to non-crimp fabrics, woven fabrics have the disadvantage of ondulation. This leads to a reduction in mechanical properties as well as optical defects (e.g. gaps in the fabric). Spread fabrics are a solution to this problem. However, there is not yet a process suitable for SMEs with which standard fabrics can be spread according to customer requirements in a process separate from weaving.

The aim of this thesis is firstly the development of a testing system for determining the surface coverage of fabrics. Secondly, a method and a system for increasing the surface coverage (the fabric spreading process) will be developed and evaluated. Both the optical testing system and the fabric spreading device on a laboratory scale will be developed according to suitable design methodology and then experimentally validated. The combination of the functional principles is so promising that the fabric spreading unit can be scaled up to industrial scale and improved in the process.

The fabric spreading line will be evaluated in final tests. Two fabric variants are produced from carbon fibres with standard areal weights for use in the automotive and aerospace sectors. However, compared to standard fabrics, these have the following degrees of surface coverage: a fabric with an areal weight of 200 g/m² and 99 % surface coverage and a fabric with an areal weight of 160 g/m² and a surface coverage of an unspread 200 g/m² fabric (approx. 95 %). Spreading the rovings in the fabric reduces the ondulation and increases the surface coverage. This allows thinner individual layers to be produced and a better surface quality to be achieved.

<u>Inhaltsverzeichnis</u> <u>I</u>

Inhaltsverzeichnis

1	Einleitung			
	1.1	Ausgangssituation und Motivation der Arbeit	1	
	1.2	Ansatz und Zielsetzung der Arbeit	3	
	1.3	Vorgehen zur Erreichung der Ziele und Aufbau der Arbeit	3	
2	The	oretische Grundlagen zur Qualität von Geweben	6	
	2.1	Allgemeine Qualitätsdefinitionen	6	
	2.2	Qualitätsmerkmale von Verstärkungsfasergeweben	10	
		2.2.1 Qualitätsmerkmale und Prüfverfahren von Textilien	11	
		2.2.2 Gewebefehler	16	
		2.2.3 Qualitätsanforderungen an Carbonfasergewebe	17	
		2.2.4 Zwischenfazit: Gewebefehler als Qualitätsfaktor	24	
	2.3	Gewebegeschlossenheit als Qualitätskriterium fehlerfreier		
		Gewebe	24	
		2.3.1 Definition	24	
		2.3.2 Vorteile einer hohen Gewebegeschlossenheit	26	
		2.3.3 Mess- und Prüfmethoden zur optischen Bestimmung der Gewebequalität	26	
	2.4	Zwischenfazit zur Qualitätsbewertung von Geweben	29	
3	Sta	nd der Technik zum Verstärkungsfaserweben	30	
	3.1	Eigenschaften von Verstärkungsfasern	30	
	3.2	Herstellung von Verstärkungsfasergeweben	32	
	3.3	Einfluss der Fasereigenschaften auf den Webprozess und die		
		Gewebequalität	36	
4	Tre	nds und Defizite in der Herstellung geschlossener Gewebe	38	
	4.1	Tape-Weben – Sonderwebverfahren zur Verarbeitung		
		vorgespreizter Rovings	42	
		4.1.1 Herstellung von Carbonfasertapes	42	
		4.1.2 Besonderheiten im Aufbau von Tape-Webmaschinen	45	
		4.1.3 Wirtschaftlichkeit von Tape-Webmaschinen	47	
	4.2	Gewebespreizen – Nachträgliches Spreizen der Rovings in der		
		textilen Fläche	49	

		4.2.1	Überblick über bisher entwickelte Gewebespreizverfahren 4.2.1.1 Gewebespreizkonzept nach Gotoh et al. [GY89] 4.2.1.2 Gewebespreizverfahren nach Beraud und Bruyere	50 51		
			[BB17] 4.2.1.3 Gewebespreizen nach Hirai und Machii [HM08] 4.2.1.4 Gewebespreizverfahren nach Hamade et al.	52 54		
			[HTM94]	56		
			4.2.1.5 Gewebespreizen nach Keppel und Rakovac [KR15]	58		
		4.2.2	Vergleich und Defizite der bisherigen Verfahren	61		
5	Zwi	schen	fazit und Aufgabenstellung	63		
6	Opt	ische	Prüfung der Gewebequalität	64		
	6.1	Ausw	ahl des Entwicklungsvorgehens	64		
	6.2	Anfor	derungsdefinition an das Prüfsystem	66		
	6.3	Konst	truktion eines Beleuchtungsprüfstands für Textilien	67		
		6.3.1	Epic user story: Allgemeines Gesamtkonzept	67		
		6.3.2	Erster Sprint: Grundfunktionen, Durchlichtfeld	69		
		6.3.3	Zweiter Sprint: Erweiterung um Auflichtrahmen	74		
		6.3.4	Weitere Sprints: Gestell und Kamerahalterung	77		
		6.3.5	Bewertung der Erfüllung des Gesamtziels	78		
	6.4	Entwi	Entwicklung eines Softwaretools zur Auswertung der			
		Gesc	hlossenheit	79		
		6.4.1	Aufstellen einer Anforderungsliste	79		
		6.4.2	Auswahl von Kameratechnik, Programmierschnittstelle			
			und Programmiersprache	81		
		6.4.3	Agile Programmierung	82		
			6.4.3.1 Umwandlung in Schwarz-Weiß-Bild	82		
			6.4.3.2 Geschlossenheitsberechnung	87		
		6.4.4	Validierung des Softwaretools	88		
	6.5	Zwisc	chenfazit zum optischen Prüfverfahren	90		
7	Erh	öhung	der Gewebegeschlossenheit durch nachträgliches			
	Spr	eizen		91		
	7.1		tze und Methoden zur Erhöhung der Geschlossenheit Erarbeiten neuer Lösungen mittels Kreativtechnik	92 92		
		1.1.1	Eranbolton nodor Eosangon milleis Mealiviconnik	32		

<u>Inhaltsverzeichnis</u> III

		7.1.2	Analyse, welche Prinzipien des Tape-Spreizens auf das		
			Gewebespreizen übertragbar sind	94	
		7.1.3	Detaillierte empirische Untersuchung verschiedener		
			Spreizprinzipien mittels vereinfachter Kurzversuche	95	
		7.1.4	Zwischenfazit zu identifizierten Wirkprinzipien	99	
	7.2	Entwi	cklung eines Gewebespreizaggregats im Labormaßstab	101	
		7.2.1	Anforderungen präzisieren	103	
		7.2.2	Konzepte entwickeln	105	
		7.2.3	Gesamtlösung gestalten	110	
		7.2.4	Zwischenfazit zur Konstruktion der Gewebespreizanlage	116	
	7.3	Validi	erung des entwickelten Spreizverfahrens	117	
		7.3.1	Versuchsplanung	117	
		7.3.2	Screening-Versuche zu Druckkraft, Vibration und		
			Geschwindigkeit	119	
		7.3.3	Untersuchung der Vibration	125	
		7.3.4	Untersuchung der Erwärmung	130	
		7.3.5	Vergleich verschiedener Gewebevarianten	132	
		7.3.6	Fazit der Versuche im Labormaßstab	134	
8	Unt	ersuch	nung und Nachweis der Industrietauglichkeit	135	
	8.1	Hoch	skalieren einer Gewebespreizanlage auf Industriemaßstab	135	
	8.2	•			
			ebespreizanlage	138	
			Verzugstest	138	
			Validierung der Spreizergebnisse	140	
	8.3		rimentgestützte Optimierung des Spreizprozesses in der		
		Indus		142	
		8.3.1	Einfluss der Webparameter auf die		
			Gewebegeschlossenheit	142	
			8.3.1.1 Versuchsaufbau für optische Prüfungen am		
			Warenprüftisch	147	
			8.3.1.2 Versuchsergebnisse	148	
		8.3.2	Einfluss der Spreizparameter auf die		
			Gewebegeschlossenheit	154	
	8.4	Zwisc	chenfazit zu den Versuchen im Industriemaßstab	165	

9	Trar	Transfer des Gewebespreizverfahrens auf weitere			
	Fas	ermat	erialien	167	
	9.1	Produ	ukt- und Marktanalyse zur Bestimmung des Potenzials	167	
	9.2		ertung des Prozesses für alternative Fasermaterialien Übertrag auf 12k-Carbonfasern 9.2.1.1 Gewebeherstellung 9.2.1.2 Zyklische Spreizversuche und Auswertung der	169 169 169	
		9.2.2	Geschlossenheit 9.2.1.3 Auswertung der Ondulation und Lagendicke Übertrag auf Viskosefasern 9.2.2.1 Gewebeherstellung 9.2.2.2 Spreizversuch und Auswertung der Geschlossenheit	170 173 177 177	
10	Tec	hnisch	ne Gesamtbewertung des Gewebespreizverfahrens	180	
11	Wirtschaftliche Bewertung des Gewebespreizverfahrens 18				
12	2 Ausblick 19				
13	Zus	amme	enfassung	194	
14	1 Summary				
15	Abb	ildung	gs- und Tabellenverzeichnis	204	
		Abbild Tabel	dungen Ilen	204 210	
16	Lite	ratur		213	
17	7 Anhang A: Abkürzungsverzeichnis, Formelzeichen			236	
18	3 Anhang B: Einflussgrößen der Entwicklung eines optischen Qualitätsprüfsystems			239	
19		•	C: Übersicht über Konzeptideen für preizverfahren	241	

<u>Inhaltsverzeichnis</u> V

20	Anhang D: Kurzversuche zur Auswahl der Gewebespreizprinzipien	244
21	Anhang E: Anforderungsliste für das Gewebespreizverfahren im Labormaßstab	252
22	Anhang F: Anforderungsliste für das Gewebespreizverfahren im Industriemaßstab	256