Heftreihe des Instituts für Bauingenieurwesen Book Series of the Department of Civil Engineering Technische Universität Berlin

Herausgeber:

Editors:

Prof. Dr.-Ing. Matthias Barjenbruch
Prof. Dr.-Ing. Karsten Geißler
Prof. Dr.-Ing. Reinhard Hinkelmann
Prof. Dr.-Ing. Wolfgang Huhnt
Prof. Dr.-Ing. Bernd Kochendörfer
Prof. Dr.-Ing. Yuri Petryna
Prof. Dr.-Ing. Stavros Savidis
Prof. Dr. sc. techn. Mike Schlaich
Prof. Dr.-Ing. Volker Schmid
Prof. Dr.-Ing. Frank U. Vogdt

Shaker Verlag Aachen 2013

Heftreihe des Instituts für Bauingenieurwesen Book Series of the Department of Civil Engineering Technische Universität Berlin

Band 13

Jingming Hou

Robust Numerical Methods for Shallow Water Flows and Advective Transport Simulation on Unstructured Grids

D 83 (Diss. TU Berlin)

Shaker Verlag Aachen 2013

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the internet at http://dnb.d-nb.de.

Zugl.: Berlin, Techn. Univ., Diss., 2013

Robust Numerical Methods for Shallow Water Flows and Advective Transport Simulation on Unstructured Grids

Kumulative Dissertationsschrift von Jingming Hou Fakultät VI – Planen, Bauen, Umwelt der Technischen Universität Berlin

Gutachter: Prof. Dr.-Ing. Reinhard Hinkelmann Dr. Qiuhua Liang, Newcastle (UK)

Tag der wissenschaftlichen Aussprache: 05.02.2013

Copyright Shaker Verlag 2013

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-1857-8 ISSN 1868-8357

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9 Internet: www.shaker.de • e-mail: info@shaker.de

Publications of cumulative doctoral thesis

Journal papers

- Hou, J., Simons, F. & Hinkelmann, R. (2012), 'Improved TVD schemes for advection simulation on arbitrary grids', *International Journal for Numerical Methods in Fluids* 70, 359–382 (Impact Factor: 1.176).
- Hou, J., Simons, F. & Hinkelmann, R. (2013), 'A new TVD method for advection simulation on 2D unstructured grids', *International Journal for Numerical Methods in Fluids* 71, 1260–1281 (Impact Factor: 1.176).
- Hou, J., Liang, Q., Simons, F. & Hinkelmann, R. (2013), 'A 2D well-balanced shallow flow model for unstructured grids with novel slope source treatment', *Advances in Water Resources* 52, 107–131 (Impact Factor: 2.873).
- Hou, J., Simons, F., Mahgoub, M. & Hinkelmann, R. (2013), 'A robust wellbalanced model on unstructured grids for shallow water flows with wetting and drying over complex topography', *Computer Methods in Applied Mechanics and Engineering* 257, 126–149 (Impact Factor: 2.651).

Conference papers

- Hou, J., Simons, F. & Hinkelmann, R. (2012), Numerical diffusion and compression of high order TVD schemes in advection simulation, *in* 'Proceeding of the 10th International Conference on Hydroinformatics', Hamburg, Germany.
- Simons, F., Busse, T., Hou, J. & Hinkelmann, R. (2012), HMS: Model concepts and numerics around shallow water flow within an extendable modeling framework, *in* 'Proceeding of the 10th International Conference on Hydroin-formatics', Hamburg, Germany.
- Hou, J., Simons, F., Busse, T. & Hinkelmann, R. (2010), Transport simulation in shallow water flows using adaptive methods, *in* 'Proceedings of the First IAHR European Congress', Edinburgh, UK.

 Simons, F., Busse, T., Hou, J., Notay, K. & Hinkelmann, R. (2011), A robust and efficient solver for the shallow water equations and its application to a complex natural hydrosystem, *in* 'Proceedings of the 34th IAHR Congress', Brisbane, Australia, pp. 4276–4283.

Abstract

The two-dimensional (2D) shallow water equations (SWEs) are extensively used for hydrodynamic simulations in hydraulic and environmental engineering. The transport process inside shallow water, such as the transport of contaminant and sediment, can be modeled by solving the transport equation numerically. When solving the advective transport equation and SWEs, second order numerical schemes are widely used to reduce numerical diffusion caused by first order schemes. However, numerical oscillations may be induced by second order schemes without proper limiters. Second order total variation diminishing based flux limiting schemes (TVD schemes) are able to get rid of such numerical oscillations. In this cumulative dissertation, second order TVD schemes derived on 1D grids are extended to 2D unstructured grids, within the framework of the cell-centered finite volume method, to comfort to complex geometry. Moreover, an efficient treatment for slope source terms of SWEs and a robust approach handling wetting and drying are devised. This dissertation is on the basis of four papers in peer reviewed international journals and four conference contributions.

To extend second order TVD schemes to 2D unstructured grids, three methods are developed step by step. The first method adopts the TVD schemes which take the variation of cell size into account, for unstructured grids. In the second method, the first one is improved by applying more dominant upwind information perpendicular to the considered face. As a result, both the accuracy and efficiency are higher than the first one. Since an approximation is used, the accuracy of the second method is affected. By extrapolating the values of variables at the midpoint of the considered face, the third TVD method can produce more accurate results than the first two methods. The amelioration of each method in simulating linear advection is illustrated by the test cases in the corresponding papers and by a new test case in this dissertation. In addition, the third method is also employed to solve the SWEs.

A new treatment for the slope source terms of the SWEs is devised for unstructured grids. This treatment together with the hydrostatic non-negative water depth reconstruction method and the HLLC approximate Riemann solver, constitute a well-balanced scheme, which satisfies the conservation property.

In the case with the occurrence of wet-dry fronts, the very small water depths near wet-dry fronts may lead to unphysical high velocities and in turn to negative water depths. To preserve numerical stability, a new adaptive approach is proposed, by means of switching to first order scheme in such sensitive areas. In this dissertation, the third method extending TVD schemes to 2D unstructured grids incorporated with the well-balanced scheme and the adaptive approach are proposed finally to simulate shallow water flows and advective transport inside. This model is able to get rid of numerical oscillations, to preserve the C-property and mass conservation, to achieve good convergence to steady state, to capture discontinuous flows and to handle complex flows involving wetting and drying over uneven beds, on unstructured grids with poor connectivity, in an accurate, efficient and robust way. These capabilities are verified against analytical solutions, numerical results of alternative models and experimental and field data.

Kurzfassung

Im Rahmen von hydraulischen und umwelttechnischen Fragestellungen sind auf der Lösung der zweidimensionalen Flachwassergleichungen basierende, hydrodynamische Simulationen weit verbreitet. Transportprozesse innerhalb Flachwasserströmungen, z.B. der Transport von Schadstoffen oder Sediment, können mit Hilfe der numerischen Lösung der Transportgleichungen modelliert werden. Zur Reduktion der numerischen Diffusion, die insbesondere bei numerischen Lösungsverfahren mit einer Genauigkeit erster Ordnung auftreten, werden häufig Verfahren zweiter Ordnung für die Lösung der advektiven Transport- und der Flachwassergleichungen verwendet. Ohne geeignete Limitierungen neigen Verfahren zweiter Ordnung jedoch zu numerischen Oszillationen. Sogenannte Total Variation Diminishing (TVD) basierte Verfahren zur Limitierung der numerischen Flüsse vermeiden numerische Oszillationen.

In dieser kumulativen Dissertation werden die TVD-Verfahren, die ursprünglich für eindimensionale Gitter hergeleitet wurden, im Rahmen der zellzentrierten Finite-Volumen-Methode auf zweidimensionale unstrukturierte Netze erweitert, um Berechnungen für komplexe Geometrien zu erlauben. Außerdem wird eine effiziente Behandlung des Sohlgefälleterms der Flachwassergleichungen und ein robuster Ansatz für die Behandlung von Benetzen und Trockenfallen entwickelt. Diese Dissertation basiert auf vier begutachteten Artikeln in internationalen Fachzeitschriften und vier Konferenzbeiträgen.

Schrittweise wurden drei Methoden zur Erweiterung der TVD-Verfahren auf zweidimensionale unstrukturierte Gitter entwickelt. In der ersten Methode werden die TVD-Verfahren, die die Variation der Zellengrößen berücksichtigen, auf unstrukturierte Gitter angewendet. Darauf aufbauend wurde in der zweiten Methode das vorgestellte Verfahren verbessert, indem mehr Informationen aus der Strömungsrichtung senkrecht zur betrachteten Zellkante berücksichtigt wurden. Durch zusätzliche Extrapolation der Variablen an den Mittelpunkten der betrachteten Zellkante erzeugt die als dritte vorgestellte Methode noch genauere Ergebnisse als die ersten beiden. Die Verbesserung jeder Methode bezüglich der Simulation von linearer Advektion wird in den entsprechenden Artikeln durch Testszenarien aufgezeigt, und ein neues Testszenario wird in dieser Dissertation präsentiert. Außerdem wird die dritte Methode zusätzlich auf die Lösung der Flachwassergleichungen übertragen.

Für die Behandlung des Schlgefälleterms der Flachwassergleichungen wurde ein neues Verfahren entwickelt. Zusammen mit der hydrostatischen, stets positiven Rekonstruktion der Wassertiefe und dem approximativen HLLC-Riemann-Löser erhält man so ein massen- und impulskonservatives sowie balanciertes Verfahren.

Beim Auftreten von Trockenfallen und Benetzen können sehr kleine Wassertiefen an der Benetzungsfront zu unphysikalisch hohen Fließgeschwindigkeiten und negativen Wassertiefen führen. Um numerische Stabilität zu erhalten, wurde ein neuer adaptiver Ansatz vorgeschlagen. Dieser basiert auf der Idee, die Genauigkeit des Verfahrens in kritischen Bereichen auf eine Genauigkeit erster Ordnung zu reduzieren.

In dieser Dissertation wird die dritte Methode zur Erweiterung der TVD-Verfahren auf zweidimensionale unstrukturierte Gitter schließlich mit dem zuvor beschriebenen Verfahren zur Lösung der Flachwassergleichungen für die Simulation von Strömungs- und Transportprozessen kombiniert. Das entstandene Modell zeigt keine numerischen Oszillationen, ist massen- und impulskonservativ und zeigt ein gutes Konvergenzverhalten für stationäre und instationäre Berechnungen. Des Weiteren werden Diskontinuitäten in der Strömung, Trockenfallen und Benetzen auf unebener Sohle auf unstrukturierten Gittern genau, effizient und robust gelöst. Vergleiche mit analytischen Lösungen, Ergebnissen alternativer Modelle und Daten aus Experimenten und Feldmessungen bestätigen die genannten Fähigkeiten.

Acknowledgement

This dissertation contains my research work as a PhD student at the Chair of Water Resources Management and Modeling of Hydrosystems, Technische Universität Berlin during the years from 2008 to 2012.

I would like first to thank my supervisor Prof. Dr.-Ing. Reinhard Hinkelmann for the opportunity of this doctoral study, for the enlightening lectures, for the valuable suggestions, for the great freedom to develop my own ideas and for his generous support.

The China Scholarship Council who provided for my living expenses is gratefully acknowledged.

I would also like to pass on many words of thanks to Dr. Qiuhua Liang, from Newcastle University, UK, for his professional advice and very helpful data on the numerical simulation for shallow water flows.

I am highly indebted to all my colleagues in Berlin for their helps, collaboration and suggestions during this study. Special thankfulness goes to Dipl.-Ing. Franz Simons who helps me a lot during my stay in Berlin.

I would like to thank my parents for their continued support and encouragement. And finally, the author expresses his deepest appreciation to his wife, Yu, for her unwavering support, encouragement, faith and love.

Contents

List of figures			xi
			xiii
1	Int 1.1 1.2	roduction Motivation 1.1.1 Model concepts for flow and transport processes in surface water 1.1.2 Existing numerical methods and their deficits Objectives and thesis outline Objectives and thesis outline	$ \begin{array}{c} 1 \\ 1 \\ 5 \\ 13 \end{array} $
2	Gov	verning equations	17
3	Nu 3.1 3.2 3.3	 merical methods in solving advective transport equation and SWEs Finite volume method	 19 19 20 21 22 25 34
	3.5 3.6	 journal paper)	34 36 37 38 39
		 3.6.1 Weil-balanced scheme for the case with wet-dry fronts (4th journal paper) 3.6.2 Treatment for small water depths occurring in wetting and 	39
	3.7	drying processes (adaptive approach)	40 42

Contents

	3.8 Procedure for updating values in a cell	43	
4	Selected numerical results	45 45 47	
5	Summary, conclusions and outlook	53	
Bibliography			

List of figures

1.1	Rising floodwaters spread through the low-lying suburb of Depot	
	Hill in Rockhampton, in eastern Queensland on January 2, 2011	
	(Mechielsen Lyndon/Getty Images).	2
1.2	Transport processes in surface water: (a) tracer transport in river (figure from mixing processes image gallery, CORMIX), (b) turbid	
	water of the Mississippi mixing with the dark blue water of the	
	Gulf two days after a rainstorm (image courtesy Liam Gumley,	
	Space Science and Engineering Center, University of	0
1.0	Wisconsin-Madison and the MODIS science team)	3
1.3	Numerical diffusion and numerical oscillations in advection	
	simulation with the first order upwind scheme (FOU) and central	
	difference scheme (CD).	4
1.4	Complex flow with wetting and drying over complex topography	-
1 5	(blue denotes water and green denotes topography).	Э
1.5	variable's notations at the face f on unstructured grid (3rd journal	0
16	paper).	9
1.0	Sketch of free-surface now with wet-dry interface and notations of	19
	some variables.	10
3.1	Stencil for the integral over a triangular cell.	20
3.2	Second order TVD region and some schemes for one-dimensional	
	uniform grids (1st journal paper)	22
3.3	Second order TVD region and some schemes for one-dimensional	
	non-uniform grids (1st journal paper).	22
3.4	Comparison of different schemes in tracer cloud case shaped in	
	rectangle (Figures 7(b) and (c) in 1st journal paper)	23
3.5	Advection node stencil of the present TVD methods on	
	two-dimensional unstructured grids (1st journal paper)	25
3.6	Simulation results at a cross section of a two-dimensional advection	
	with discontinuities (1st journal paper)	27
3.7	Advection node stencil of the new TVD method on	
	two-dimensional unstructured grids (2nd journal paper)	28
3.8	Simulation results at a cross section of a two-dimensional advection	
	with discontinuities (the test case in section 5.3 of 2nd journal paper).	29

3.9	Computational domain, grid, initial and exact shape of "Gaussian	
	distribution : (a) computational domain and grid for the rotating	
	"Gaussian distribution" test case, (b) initial and exact shape of "Gaussian distribution" at $t = 1.0$ s	33
3 10	Numerical results of the rotating "Gaussian distribution" at	00
0.10	t = 1.0 s computed by: (a) the first order upwind scheme (FOII):	
	t = 1.05 computed by: (a) the first order upwind scheme (FOO), (b) the first TVD method with Van Leer scheme: (a) the second	
	(b) the first TVD method with Van Leer scheme, (c) the second	
	I VD method with Van Leer scheme; (d) the third I VD method	~
	with Van Leer scheme	35
3.11	L_1 errors of different TVD methods for the rotating "Gaussian"	
	distribution" test case.	36
3.12	Integral form of the slope source for a one-dimensional column	
	computed with the proposed approach (equation (3.37)): (a) for a	
	case with linear variations of values in a column, (b) for a case with	
	nonlinear variations of values in a column (3rd journal paper).	38
3.13	Variables for slope flux calculation in a triangular cell (3rd journal	
	paper).	39
3.14	Local modification for bed elevation to preserve the C-property for	
0.11	a case with wet-dry interfaces: (a) original values of flow variables	
	(b) bed evolution at f modified locally by (3.38)	40
	(b) bed everation at f modified locally by (5.56)	40
41	Malpasset dam-break: domain with topography and locations of	
1.1	dam electric transformers survey points P and experimental	
	raugas C (2nd journal paper)	16
4.0	Mala and day have been a second secon	40
4.2	Maipasset dam-break: numerical flood routing at $t = 1800 \text{ s}$ (5rd	10
4.0	journal paper).	40
4.3	Malpasset dam-break: comparison of numerical results with police	
	survey: (a) arrival times (t_a) at three electric transformers, (b)	
	maximum water levels (η_{max}) at survey points (3rd journal paper).	48
4.4	Malpasset dam-break: comparison of numerical results with	
	experimental measurements at experimental gauges: (a) arrival	
	times (t_a) , (b) maximum water levels (η_{max}) (3rd journal paper)	49
4.5	Computational mesh and the boundary conditions for the test case	
	of River Spree.	50
4.6	The steady flow field computed by the proposed model for the test	
	case of River Spree.	50
4.7	COD plume computed by the proposed model for the test case of	
1.11	Biver Spree at $t = 1800$ s	51
48	COD plume computed by the proposed model for the test case of	01
1.0	River Spree at $t = 3600$ s	51
10	COD plume computed by the proposed model for the test case of	01
4.3	Biver Spree at $t = 7200 \text{g}$	E 1
	niver spree at $t = 1200$ s	-01

Nomenclature

Abbreviations

1D	one-dimensional
2D	two-dimensional
3D	three-dimensional
BAP	basis of the averaging procedure
CCFV	cell-centered finite volume
COD	chemical oxygen demand
C-property	conservation property
CVs	conservative variables
ENO	essentially non-oscillatory
FCT	flux corrected transport
FEM	finite element method
FO	first order scheme
FOU	first order upwind
FSC	free surface correction
FVM	finite volume method
HLLC	Harten, Lax and van Leer approximate Riemann
	solver with the contact wave restored
HMS	Hydroinformatics Modeling System
HR	high resolution
LCD	limited central difference
MLP	multi-dimensional limiting process
MUSCL	monotone upstream schemes for conservation law
PDE	partial differential equation
PVs	primitive variables
SGM	surface gradient methods
SO	second order schemes
SWEs	shallow water equations
TVD	total variation diminishing
VFRs	volume-free surface relationships
WBAP	weighted biased averaging procedure
WENO	weighted essentially non-oscillatory

Terms with Latin letters

c	concentration of the tracer transported	$[kg/m^3]$
C	upwind node or the cell whose centroid is C	r 1
C_f	bed roughness coefficient	[—]
D	downwind node or the cell whose centroid is D	
f T	face under consideration	r 1
F'	Froude number	[-]
g	gravity	$[m/s^2]$
h	water depth	[m]
i	index of cell	
Ι	intersection point at the considered face	
k	index of the faces of a cell	
l	area of a face (length for two dimensions)	$[m^2]$
L	left-side of f or the left cell or node distance	
L_1	L_1 error	
M	midpoint of the considered face	
n	Manning coefficient or time level	$[s/m^{\frac{1}{3}}]$ or $[s]$
q_c	sink or source term of tracer	2
q_x, q_y	unit-width discharges in x - and y -directions	$[m^2/s]$
r	r - factor	[-]
R	right-side of f or the right cell	
t	time	$[\mathbf{s}]$
u, v	velocities in x - and y -directions	[m/s]
U	further upwind node	
x, y	components of Cartesian coordinate	[m]
z_b	bed elevation	[m]
f, g	flux vectors in x - and y -directions	
F	flux vector	
n	unit outward vector normal to boundary	
q	flow variable vector consisting of h , q_x , q_y and ch	
\mathbf{r}_{LI}	position vector	
S	source vector including slope source term \mathbf{S}_{h}	
	and friction source term \mathbf{S}_{f}	
v	velocity vector	

Terms with Greek letters

Γ	boundary of the control volume
Δ	variable difference
ε_{wd}	wet-dry tolerance or threshold
η	water level $\eta = h + z_b$
$\underline{\nu}_t$	turbulent diffusivity tensor
ν_w	turbulent viscosity
ρ	density of water
ϕ	transported variable
ψ	flux limiter function
Ω	control volume
∇	gradient operator

[m]	
[m]	
$[m^2/s]$	
$[m^2/s]$	
$[kg/m^3]$	