Permanentmagneterregter Synchronmotor mit integrierter Energieübertragung in das Läufersystem

Dipl.-Ing. Markus Reinhard geboren in Ludwigshafen am Rhein

Vom Fachbereich Elektrotechnik und Informationstechnik der Technischen Universität Kaiserslautern zur Verleihung des akademischen Grades Doktor der Ingenieurwissenschaften (Dr.-Ing.) genehmigte Dissertation

D386

Tag der mündlichen Prüfung: 29.10.2008

Dekan: Prof. Dr.-Ing. Steven Liu

Promotionskommission:

Vorsitzender: Prof. Dr.-Ing. Alexander Potchinkov

Erstgutachter: Prof. Dr.-Ing. Gerhard Huth

Zweitgutachter: Prof. Dr.-Ing. Dr.-Ing. E.h. Werner Freise

Kaiserslauterer Beiträge zur Antriebstechnik

Band 2

Markus Reinhard

Permanentmagneterregter Synchronmotor mit integrierter Energieübertragung in das Läufersystem

D 386 (Diss. Technische Universität Kaiserslautern)

Shaker Verlag Aachen 2009

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Kaiserslautern, TU, Diss., 2008

Copyright Shaker Verlag 2009 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8322-8170-0 ISSN 1866-5357

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Präambel

Diese Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Lehrstuhl für Mechatronik und elektrische Antriebssysteme der TU Kaiserslautern. Mein Dank gilt Prof. Dr.-Ing. Gerhard Huth für die engagierte Betreuung der Arbeit. Die gemeinsamen Diskussionen haben zum Gelingen der Arbeit beigetragen.

Für die Unterstützung der Arbeit bin ich der Siemens AG, Erlangen, verpflichtet. Insbesondere möchte ich Herrn Dr. Reinhard Maier danken.

Für die Übernahme des Koreferats und das der Arbeit entgegengebrachte Interesse danke ich Herrn Prof. Dr.-Ing. Dr.-Ing. E. h. Werner Freise.

Danken möchte ich auch allen Kollegen, die mit mir am Lehrstuhl gearbeitet haben. Ich verdanke ihnen viele fruchtbare Diskussionen.

Viele Studenten haben mit ihren Studien- und Diplomarbeiten oder ihrer Tätigkeit als wissenschaftliche Hilfskraft zum Gelingen dieses Projekts beigetragen. Ihnen allen gilt mein Dank.

Von ganzem Herzen danke ich meiner Mutter, die mir nicht nur meine Ausbildung ermöglichte, sondern auch stets an meiner Seite stand.

Vor allem aber möchte ich meiner Frau Melanie für ihre nie endende Geduld und Unterstützung während der Arbeit an dieser Dissertation herzlich danken.

Übersicht

Bei einer Vielzahl von Anwendungen ist es nötig, über elektrische Energie auf einem beweglichen, insbesondere rotierenden Bauteil zu verfügen. Denkbar ist beispielsweise die Versorgung einer Sensorik mit elektrischer Energie oder das Bereitstellen von elektrischer Energie zum Spannen oder Wechseln von Werkzeugen bei direktangetriebenen Werkzeugspindeln. Auch bei Industrierobotern mit Folgeachsen besteht das Problem, dass die nachgeordneten Motoren mit elektrischer Energie versorgt werden müssen.

Die vorliegende Arbeit befasst sich mit der analytischen Untersuchung, der Optimierung, dem Bau und der messtechnischen Überprüfung eines permanentmagneterregten Elektromotors mit integrierter, kontaktloser Energieübertragung vom Ständer auf das Läufersystem.

Beim bisherigen Stand der Technik werden zur Lösung dieser Probleme entweder Konstruktionen mit galvanischer Kopplung, wie Schleifringe und Schleppkabel oder kontaktlose Methoden, hauptsächlich Ferritübertrager, eingesetzt. Alle diese Methoden haben gemeinsam, dass eine weitere Baugruppe neben dem eigentlichen Antrieb in die Anlage eingebaut werden muss. Dadurch wird zum einen zusätzlicher Bauraum benötigt, zum anderen steigen der Konstruktionsaufwand und die Kosten.

Es ist daher geboten, Möglichkeiten zur integrierten und kontaktlosen Energieübertragung zu untersuchen. Das im Rahmen der vorliegenden Arbeit ausgearbeitete Konzept integriert die kontaktlose, induktive Energieübertragung in das Aktivteil des Antriebsmotors. Probleme wie abgenutzte Kohlebürsten oder gebrochene Schleppkabel können so vermieden werden. Bei dem hier vorgestellten Motor handelt es sich um eine permanentmagneterregte Synchronmaschine mit je einer zusätzlichen Drehstromwicklung im Ständer und im Läufer zur Übertragung der elektrischen Energie in das Läufersystem. Die beiden Funktionen Antrieb und Energieübertragung sind dabei voneinander unabhängig. Das bedeutet, dass beide Funktionen über getrennte Hardware verfügen. Es existieren also zwei Umrichter und zwei Wicklungen, die sich die Nuten von nur einem Aktivteil teilen. Die Unabhängigkeit beider Funktionen wird durch eine geeignete Wahl der

Wicklungsparameter erreicht. Auch die Regelung beider Funktionen ist unabhängig voneinander. Die Funktionen können parallel oder auch einzeln arbeiten. Die getrennte Realisierung der zwei Funktionen erleichtert zum einen die Dimensionierung der Maschine, da jede Funktion in bestimmten Grenzen für sich alleine optimiert werden kann. Außerdem erhöht sich die Betriebssicherheit durch die getrennte Ausführung beider Funktionen.

Summary

A variety of applications wants for electric power on a moving especially rotating part. One example is the power supply of a measurement device on a rotating or moving part. Another example is the supply of energy to clump a tool on a direct driven spindle. Also the subsequent electric machines of multi axis industrial robots have to be powered.

The thesis deals with the analysis, optimization, construction and measurement of a new electric machine with integrated contactless power transmission on the rotor system.

Today's technology uses contact or non-contact solutions. Contact solutions are slip rings and trailing cables. Non-contact solutions are ferrite transducers. These solutions have in common an additional component that has to be attached to the drive housing. Hence, additional construction space is necessary. In addition the complexity and the costs of the system will rise.

Therefore it is reasonable to investigate solutions with integrated non-contact power delivery. With this contribution a concept is elaborated that features a motor with integrated contactless inductive power transmission. Problems like brush wear and broken trailing cables can be overcome. Both functions, drive and energy transmission, are completely independent. The hardware of both functions is separated, which means both functions feature their own hardware. There are two inverters and two windings sharing the same stator slots. Above this, the control of both functions is independent. The two functions may operate at the same time or alternating. Through the separated realization, the design process of the machine is simplified, the optimization of both functions can be done independently within specific limits. Also the operational reliability increases.

The proposed motor is a permanent excited synchronous machine with one additional three-phase winding in the stator and one additinal three-phase winding in the rotor for the energy transmission. The independence of both functions is gained by a appropriate choice of the winding parameters.

Inhaltsverzeichnis

1.	Einle	eitung	1
2.		zept der integrierten kontaktlosen Energieübertragung	3
	2.1.	Anwendungen	
	2.2.	Stand der Technik	5 9
	2.3. 2.4.	Entkopplung von Antriebs- und Energieübertragungsfunktion Mögliche Realisierungsformen der integrierten Energieüber-	
		tragung	10
		2.4.1. Allgemeine Informationen zu möglichen Realisierungen	10
		2.4.2. Realisierung der Energieübertragung mit zwei ge-	
		trennten Ständerwicklungen	10
		2.4.3. Realisierung der Energieübertragung mit einem Strom	
		in der d-Achse	15
		2.4.4. Realisierung der Energieübertragung unter Ausnut-	
		zung subharmonischer Luftspaltfelder	20
		2.4.5. Realisierung der Energieübertragung mittels eines Re-	
		luktanzmotors	21
	2.5.	Auswahl des weiter zu untersuchenden Konzepts	22
	2.6.	Schaltungsoptionen	26
3.	Mod		29
	3.1.	Randbedingungen	29
	3.2.		30
		3.2.1. Modellbildung der Motorfunktion und Aufbau der	
		Simulation	30
		3.2.2. Berechnung der Motorparameter	33
		3.2.3. Momentenberechnung	39
		3.2.4. Magnetkreisberechnung	40
	3.3.	Energieübertragungsfunktion	40
	3.4.	Verluste	45
		3.4.1. Allgemeines zu den Verlusten	45
		3.4.2. Verlustarten	46

			3.4.2.1.	Kupferverluste	46
			3.4.2.2.	Eisenverluste	46
			3.4.2.3.	Mechanische Verluste	47
			3.4.2.4.	Verluste in den Magneten	48
		3.4.3.	Verlustn	nanagement	48
			3.4.3.1.	Allgemeines zum Verlustmanagement	48
			3.4.3.2.	Feste Aufteilung der zulässigen Verluste .	49
			3.4.3.3.	Variable Aufteilung der zulässigen Verluste	49
			3.4.3.4.	Kurzzeitiger Betrieb einer Funktion	49
	3.5.	Läufer		sregelung	50
		3.5.1.	Allgeme	ines zur Spannungsregelung	50
		3.5.2.	Nachfüh	rung der Leerlaufspannung	50
		3.5.3.		g der Sekundärspannung ohne Messung der	
				ößen	52
		3.5.4.		g der Sekundärspannung mittels mitrotieren-	
			dem Ste	llglied	54
1	Aug	logung	des Funk	ktionsmusters	57
┰.	4.1.			Optimierung eines Funktionsmusters mittels	31
	1.1.			sätze	57
				ng und Optimierung der Motorfunktion	57
		4.1.2.		ng und Optimierung der Energieübertragungs-	
			0		67
	4.2.	Überp		r Funktionsmusterauslegung mittels der Me-	
				en Elemente	74
5.	Kon			au des Funktionsmusters	81
	5.1.			Konstruktion	81
	5.2.		_	gnete	84
	5.3.	Aufbr	ingen der	Bandage	86
6	From	nhung	des Funl	ktionsmusters und Vergleich mit der Simu	_
٠.	latio		acs rain	Chonsinasters and Vergicien inte der Sinia	91
			neines zur	n Testprogramm	91
	6.2.			otorfunktion	91
		6.2.1.		nung der Spannungskonstanten	91
		6.2.2.		nung der Drehmomentenkonstanten	96
		6.2.3.		nung der Nutrastmomente	98
		6.2.4.		nung der Drehmoment-Drehzahl- Kennlinien	101
	6.3.			nergieübertragungsfunktion	106

		Gegenseitige Beeinflussung der Funktionen	
7.	Zusa	ammenfassung	115
Α.	Sym	bolverzeichnis	- 1
Literaturverzeichnis			VII
Le	bensl	auf	ΧI

Abbildungsverzeichnis

2.1.	Computertomograph der Firma Siemens	4
2.2.	Galettenanordnung zum Führen eines Fadens	4
2.3.	Vereinfachte Darstellung eines Ringkerntransformators	6
2.4.	Prinzipdarstellung eines U-förmigen Pick-Ups	7
2.5.	Schematischer Aufbau der Konzeptvariante auf Basis getrennte	r
	Ständerwicklungen sowie permanentmagneterregter Motor-	
	funktion	11
2.6.	Erläuterung zur Transformation in ein rotorfestes d-q-Koordi-	
	natensystem am Beispiel einer zweipoligen Maschine	17
2.7.	Konzept der Energieübertragung mittels eines Stroms in der	
	d-Achse	17
2.8.	Schematischer Aufbau der Konzeptvariante auf Basis der d-	
	q-Regelung am Beispiel einer 2p-poligen Maschine	19
2.9.	Schematischer Aufbau der Konzeptvariante auf Basis sub-	
	harmonischer Luftspaltfelder	21
2.10.	Drehmoment-Leistungsübertragungs-Kennlinie der Variante	
	auf Basis eines Reluktanzmotors	23
2.11.	Aufbau mit zwei Einspeiseumrichtern und zwei Spannungs-	
	zwischenkreisen	26
2.12.	Schaltung der Frequenzumrichter mit einem gemeinsamen	
	Spannungszwischenkreis	26
2.13.	Schaltung der d-q-Variante	27
3.1.	Schematische Darstellung eines permanentmagneterregten	
0.1.	AC-Servomotors mit zusätzlicher Energieübertragung	30
3.2.	Einsträngiges Ersatzschaltbild der Motorfunktion	30
3.3.	Ablaufdiagramm des Berechnungsgangs der Motorfunktion	32
3.4.	Bezeichnung der geometrischen Größen bei einem Ständerak-	~ _
0.1.	tivteil mit parallelflankigen Zähnen	37
3.5.	Einsträngiges Ersatzschaltbild der Energieübertragungsfunk-	٠,
3.0.	tion	41
3.6.	Schaltbild des Verfahrens der Läuferspannungsnachführung	52

3.7.	Einsträngiges Ersatzschaltbild zur Herleitung der Spannungs-	۲0
2.0	regelung	53
3.8.	Technische Umsetzung der Spannungsregelung	54
3.9.	Mögliche leistungselektronische Elemente auf dem Läufer $$.	55
4.1.	Blechschnitt des Ständeraktivteils	60
4.2.	Blechschnitt des Läuferaktivteils	60
4.3.	Geometrie der Magnetschalen	62
4.4.	S1-Kennlinie bei $z=15\ldots\ldots\ldots$	64
4.5.	S1-Kennlinie bei $z=20\ldots\ldots\ldots$	65
4.6.	S1-Kennlinie bei $z=25\ldots\ldots\ldots$	65
4.7.	M(I)-Kennlinie bei $z=20$	66
4.8.	Wirkungsgrad der Motorfunktion bei $z=20$	66
4.9.	Dauerleistung bei $p_E = 1 \dots \dots \dots \dots$	69
4.10.	Dauerleistung bei $p_E = 2 \dots \dots \dots \dots$	69
	Maximal übertragbare Leistung bei $p_E = 1 \dots \dots$	70
	Maximal übertragbare Leistung bei $p_E = 2 \dots \dots$	71
	Dauerleistung bei $p_E = 2$ und $f_{1,E} = 150 \ V \dots \dots$	71
	Wirkleistung über Laststrom in der Simulation	73
	Läuferspannung über Laststrom in der Simulation	73
4.16.	Primärstrom über Laststrom in der Simulation	74
4.17.	In Maxwell 2D hinterlegte Geometrie	75
4.18.	FEM-Simulation der Nutrastung des ungestaffelten Läufers	76
	FFT der Nutrastung des ungestaffelten Läufers	76
	FEM-Simulation der Nutrastung des gestaffelten Läufers .	77
	FFT der Nutrastung des gestaffelten Läufers	78
	Induktionswerte ohne Stromeinprägung	78
	Induktionswerte bei 4 A Stromeinprägung in die Energie-	
	übertragungsfunktion	79
4.24.	Induktionswerte bei Betrieb beider Funktionen	80
F 1	William I and the lime Eight Development	
5.1.	Wicklungsschema der achtpoligen Einschicht-Bruchlochwicklun	g 82
F 0	für die Motorfunktion bei getrennten Ständerwicklungen .	82
5.2.	Wicklungsschema der vierpoligen Ständerwicklung für die	
	Energieübertragungsfunktion bei getrennten Ständerwick-	0.0
۲.0	lungen	83
5.3.	Wicklungsschema der vierpoligen Läuferwicklung für die Ener-	0.0
F 4	gieübertragungsfunktion bei getrennten Ständerwicklungen	83
5.4.	Zeichnung der Schablone zum gestaffelten Kleben der Magnete	85
5.5.	Foto der Schablone zum gestaffelten Kleben der Magnete .	85

5.6.	Fertig beklebter Läufer	86
5.7.	Läufer mit Kohlefaserroving	88
5.8.	Frisch getränktes Glasfasergewebe	88
5.9.	Fertig geschliffener Läufer	89
6.1.	Prüfstand für die Bestimmung des Betriebsverhaltens bei	
	höheren Drehzahlen	92
6.2.	Prüfstand mit Getriebemotor zur Bestimmung des Betriebs-	
	verhaltens bei sehr kleinen Drehzahlen	92
6.3.	Gemessene verkettete induzierte Spannungen bei 20 °C $$	93
6.4.	FFT der verketteten induzierten Spannung bei 20 °C $$	94
6.5.	Gemessene verkettete induzierte Spannungen bei 72 °C $$	95
6.6.	FFT der verketteten induzierten Spannung bei 72 °C $$	95
6.7.	Darstellung der Bestimmung des Winkels für DC-Bestromung	97
6.8.	Schaltbild des Aufbaus zur Bestimmung der Drehmoment-	
	enkonstanten mit DC-Bestromung	97
6.9.	$\mathrm{M}(\mathrm{I}) ext{-}\mathrm{Kennlinie}$	99
6.10.	Messung der Rastmomente des Funktionsmusters über dem	
	Drehwinkel	100
	FFT der gemessenen Rastmomente	100
	Versuchsaufbau zur Aufnahme der $M(n)\text{-}Kennlinien$	101
6.13.	$\mathrm{M(n)}\text{-}\mathrm{Kennlinie}$ bei $\Delta T = 80~K$ Wicklungserwärmung $ohne$	
	übertragene Energie bei Selbstkühlung	103
6.14.	Wirkungsgrad bei $\Delta T=80~K$ Wicklungserwärmung $ohne$	
	übertragene Energie bei Selbstkühlung	103
6.15.	Gemessene M(n)-Kennlinie bei $\Delta T=60~K$ Wicklungser-	
	wärmung $ohne$ übertragene Energie bei Eigenkühlung	104
6.16.	Gemessener Wirkungsgrad bei $\Delta T = 60~K$ Wicklungser-	
	wärmung ohne übertragene Energie bei Eigenkühlung	104
6.17.	M(n)-Kennlinie bei $\Delta T=80~K$ Wicklungserwärmung mit	
	$100\ W$ in den Läufer übertragener Leistung bei Selbstkühlung	3105
6.18.	Gemessener Wirkungsgrad bei $\Delta T = 80~K$ Wicklungser-	
	wärmung mit 100 W in den Läufer übertragener Leistung	
	bei Selbstkühlung	106
6.19.	Versuchsaufbau zur Vermessung der Energieübertragungs-	
	funktion	108
	Läuferspannung über Laststrom	109
	Wirkleistung über Laststrom	110
6.22.	Wirkungsgrad der Energieübertragungsfunktion bei Stillstand	1111

6.23. Gemessene Erwärmu	ng bei 300 W	übertragener	Leistung	
bei verschiedenen Spe	isefrequenzen			111

Tabellenverzeichnis

2.1.	Vergleich von vier möglichen Konzepten	24
4.1.	${\bf Motorabmessungen\ und\ Material daten\ des\ Funktions musters}$	59
	Drehmomentmesswerte bei DC-Speisung Ermittelte Werte für die Drehmomentenkonstante	98 98
A.2.	Übersicht über die verwendeten lateinischen Formelzeichen Übersicht über die verwendeten griechischen Formelzeichen	III V
A.3.	Übersicht über die verwendeten Indizes	VI