Automatisch Differenzierende Wellendigitalfilter

Neuartige Verfahren zur Konvergenz-Beschleunigung von nichtlinearen Wellendigital-Strukturen und solchen mit verzögerungsfreien Schleifen

Automatisch Differenzierende Wellendigitalfilter

Neuartige Verfahren zur Konvergenz-Beschleunigung von nichtlinearen Wellendigital-Strukturen und solchen mit verzögerungsfreien Schleifen

von der Fakultät für Elektrotechnik, Informationstechnik und Medientechnik der Bergischen Universität Wuppertal genehmigte

Dissertation

zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften

> von M. Sc. Lech Kolonko aus Hindenburg (Polen)

Wuppertal 2024

Tag der mündlichen Prüfung: Hauptreferent: Korreferent: 17.01.2024 Prof. Dr.-Ing. Anton Kummert Prof. Dr.-Ing. Dieter Brückmann

Berichte aus der Elektrotechnik

Lech Kolonko

Automatisch Differenzierende Wellendigitalfilter

Neuartige Verfahren zur Konvergenz-Beschleunigung von nichtlinearen Wellendigital-Strukturen und solchen mit verzögerungsfreien Schleifen

> Shaker Verlag Düren 2024

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Wuppertal, Univ., Diss., 2024

Copyright Shaker Verlag 2024 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-9449-7 ISSN 0945-0718

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99011-0 • Telefax: 02421/99011-9 Internet: www.shaker.de • E-Mail: info@shaker.de Für meine Eltern

Vorwort

Diese Arbeit ist während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Lehrstuhl für Allgemeine Elektrotechnik und Theoretische Nachrichtentechnik der Bergischen Universität entstanden.

Mein besonderer Dank gilt Herrn Prof. Dr.-Ing. Anton Kummert für die Betreuung dieser Arbeit und die kontinuierliche Unterstützung während meiner Zeit am Lehrstuhl. Herrn Prof. Dr.-Ing. Dieter Brückmann danke ich für seine Bereitschaft, das Korreferat zu übernehmen, und für sein Interesse an dieser Arbeit.

Allen Kolleginnen und Kollegen möchte ich für die anregenden Diskussionen und die Unterstützung danken, die meine Zeit am Lehrstuhl nicht nur fachlich, sondern auch menschlich sehr bereichert haben.

Weiterhin möchte ich meinen Eltern Grażyna und Maciej Kolonko sowie meinen Geschwistern Daniel Kolonko und Karolina Badura aufrichtig danken. Durch ihre konstante Unterstützung und bedingungslose Hilfe haben sie mir nicht nur Rückhalt gegeben, sondern auch ermöglicht, meinen beruflichen Werdegang erfolgreich zu gestalten.

Inhaltsverzeichnis

In	Inhaltsverzeichnis i					
Ab	Abbildungsverzeichnis v					
Та	belle	nverzei	chnis	xi		
Sy	mbol	verzeic	hnis	xiii		
1	Einl	eitung		1		
2	Well 2.1 2.2 2.3	endigit Wellen 2.1.1 2.1.2 Wellen 2.2.1 2.2.2 2.2.3 2.2.4 Stabili	alfilter: Grundlagen und Eigenschaften größen und Streumatrix Wellengrößen Streumatrix Streumatrix Nichtreaktive Elemente Nichtlineare Elemente Realisierung der Netzwerktopologie tät bei endlicher Rechengenauigkeit	 9 10 11 12 12 15 17 17 21 		
3	Nor	malfor	n, Zustandsstabilität und Kontraktions-Eigenschaft von Wellendi-			
	gita	lfiltern	77 . 1.1 1.87 1C	23		
	3.1	Modul	are Konstruktion und Normalform	23		
	3.2	Zustan	All interer Wellendigitälfilter	26		
		3.2.1		2/		
	<u>.</u>	3.Z.Z	Erwenterung auf michtimeare Netzwerke	30		
	3.3 3.∕	Anwor	utung der Kontraktions Figenschaft zur Auflösung nicht realisierbarer	30		
	э.т	Strukt	liren	34		
		3.4.1	Darstellung als mehrdimensionales Wellendigitalfilter	36		
		3.4.2	Erweiterung auf den nichtlinearen Fall	37		
		3.4.3	Einfluss künstlicher Torwiderstände auf das Konvergenz-Verhalten	38		
4	Neu Well	artiger	allgemeiner Ansatz: Automatisch Differenzierende	20		
	4 1	Einfüh	rung in die Automatische Differenziation	41		
	1.1	4.1.1	Automatische Differenziation mittels dualer Zahlen	41		
		4.1.2	Vorwärts- und Rückwärtsmodus	43		
		4.1.3	Implementierung mittels Operatorüberladung	45		
		4.1.4	Automatisch Differenzierender Signalfluss	48		

	4.2	Analys	e zur Anwendung der Automatischen Differenziation auf Wellendigi-	
		tal-Str	ıkturen	9
		4.2.1	Streuung an einem linearen Mehrtor	0
		4.2.2	Vektorwertige Notation	2
		4.2.3	Funktionale Verkettung 5-	4
		4.2.4	Lineare Streuung	6
		4.2.5	Linearkombinationen	8
		4.2.6	Automatische Differenziation ohne Operatorüberladung als Folge-	
			rung struktureller Besonderheiten	0
		4.2.7	Nichtlineare Streuung 6	1
		4.2.8	Retaping	2
	4.3	Autom	atisch Differenzierende Geometrische Reihe - Ein einführendes Beispiel 6	3
	4.4	Autom	atisch Differenzierendes Wellendigitalfilter	6
		4.4.1	Beispiel: RC-Tiefpass erster Ordnung	0
	4.5	Zusam	menfassung	3
5	Neu	artioe /	nwendungen Automatisch Differenzierender Wellendigitalfilter	
0	zur	Konver	renz-Beschleunigung bei der Auflösung nicht realisierbarer Struk-	
	ture	n	7	5
	5.1	Wellen	digitalfilter mit verzögerungsfreien Schleifen: Stand der Forschung	8
	5.2	Neuart	ige Anwendungen Automatisch Differenzierender Wellendigitalfilter	-
		zur Ko	nvergenz-Beschleunigung bei der Auflösung topologischer Schleifen . 7	9
		5.2.1	Darstellung als mehrdimensionales Wellendigitalfilter	3
		5.2.2	Beispiel: Einfach-gebrückte T-Schaltung	7
	5.3	Erweit	erung auf den nichtlinearen Fall	0
		5.3.1	Iterationsverfahren höherer Ordnung und Newton-Verfahren für Sys-	
			teme	0
			5.3.1.1 Lokale Newton-Verfahren für Systeme	1
			5.3.1.2 Globale Newton-Verfahren	9
			5.3.1.3 Vereinfachte Newton-Verfahren und reduzierte Konvergenz-	
			Matrizen	0
		5.3.2	Anwendung des Newton-Verfahrens auf nichtlineare Wellendigital-	
			filter	2
		5.3.3	Analyse einer Offline-/Online-Initialisierung mittels Fallunterschei-	
			dung	4
		5.3.4	Neuartiges nichtlineares Automatisch Differenzierendes Bauelement 11-	4
		5.3.5	Automatische Offline-Initialisierung des nichtlinearen Automatisch	
			Differenzierenden Bauelements	9
		5.3.6	Nichtlineares Automatisch Differenzierendes Wellendigitalfilter 12	2
		5.3.7	Online-Initialisierung, Newton-Iterationsphase und Update-Schritt . 12	4
			5.3.7.1 Online-Initialisierung	4
			5.3.7.2 Newton-Iterationsphase und Update-Schritt	6
		5.3.8	Alternative Realisierung mittels Operatorüberladung	8
		5.3.9	Darstellung als mehrdimensionales Wellendigitalfilter	1
		5.3.10	Hybride Wellendigital-Strukturen mit mehreren und/oder mehrtori-	
			gen Nichtlinearitäten und topologischen Schleifen	4

	5.4	Parallelisier- und Skalier	barkeit des Verfahrens	. 135
	5.5	Neuartige Anwendunger	n Automatisch Differenzierender Wellendigitalfilter	
		zur Konvergenz-Beschle	unigung	. 138
		5.5.1 Ringartige Strukt	turen	. 138
		5.5.2 Netzwerke mit m	ehreren oder mehrtorigen Nichtlinearitäten	. 144
		5.5.2.1 Modelli	erung von auf Exponential-Funktionen basierender	
		Nichtlir	pearitäten	145
		5522 Shockle	vy-Diode	148
		5.5.2.2 Dioden	Clipper Schaltung	150
		5.5.2.5 Diodein	Supper-Schaltung	150
		5.5.2.4 Verenna	Actiles Newton-vendinen	. 155
		5.5.2.5 Reduzie	achter Neuten Verfahren mit reduzierten Venuer	. 134
		5.5.2.0 Verennia	actives Newton-venamen mit reduzierten Konver-	100
		genz-M		. 155
	5.6	Zusammenrassung und	AUSDIICK	. 164
6	Neu	e Methode zur Ontimier	ung künstlicher Torwiderstände bei ringartigen	
Ŭ	Stru	kturen und mehreren u	nd/oder mehrtorigen Nichtlinearitäten	169
	61	Ringartige Strukturen	na, ouer memeringen mentimeurnaten	172
	0.1	6.1.1 Analyse bidirekt	ionaler topologischer Schleifen unter Betrachtung	• 1/ -
		ontimal verlustbe	ahafteter linearer Zweitore	172
		612 Analyse bidirekt	ionaler topologischer Schleifen unter Betrachtung	. 1/2
		minimaler Defley	zionefaktoren linearer 7weitore	177
		6.1.2 Optimiorung mit	tole subgessiver Intervall Eingrongung	100
	6 2	Notrucello mit mohrorov	n und (oder mehrterigen Nichtlingeritäten	. 100
	0.2	6.2.1 Linearisiarung d	n und/oder menntongen Nichtmeantaten	. 100
		0.2.1 Linearisierung de	i inchimeaten giobalen Streumatix mittels total-	107
		reflektierenden N		. 18/
		6.2.2 Analyse weiterer	bauteilspezifischer Eigenschaften am Beispiel der	100
	6.0	Shockley-Diode		. 192
	6.3	Zusammenfassung		. 193
7	Neu	artiger Ansatz zur Real	isierung mehrtoriger Nichtlinearitäten mittels	
'	oete	ult-modularen Bauelem	enten	197
	7 1	Generisches Wellendigit	al-Modell für nichtlineare Bauelemente mit sechs	177
	/.1	Anschlüssen	ar modeli fur mentimetre Dadelemente fint seens	108
	70	Neuertiger geteilt modu	larer Ancatz	201
	/.2	7.2.1 Pipolar Transisto		201
		7.2.1 Bipolai-Halisisto	T-MOUCH	. 201
		7.2.2 Getenit-Modulate	S EDEIS-MOII-MOUEII	. 201
	7.0	7.2.3 Beispiel: Emitter		. 20/
	/.3	Zusammenrassung und	AUSDIICK	. 212
8	Zusa	ammenfassung und Aus	blick	213
-	8.1	Zusammenfassung		. 213
	8.2	Ausblick		. 218
				10
Pu	ıblika	tionen mit eigener Bete	iligung	221
Lit	terati	ırverzeichnis		223
~~~				0

# Abbildungsverzeichnis

2.1	Typische (exemplarische) Baumstruktur eines Wellendigitalfilters	20
3.1 3.2 3.3	Wellendigitalfilter in Normalform	24 30
3.4	Iung	31 32
3.5	führtem Signalpfad $r(k)$	35
3.0	Systemstrukturen wanrend der iterationsphase zum Zeitpunkt $k_0$ und für den Update-Schritt	35
3.7	Geschlossene mehrdimensionale Darstellung mit nichtlinearen Verzögerungs-         Operatoren	36
4.1	Automatisch Differenzierende Signalflußgraphen für die Operatoren der Addition/Subtraktion sowie Multiplikation zweier Signale	49
4.2	Automatisch Differenzierende Signalflußgraphen für lineare Operatoren der konstanten Multiplikation, Division sowie einer allgemeinen nichtlinearen Funktion	49
4.3	Anschauliche Darstellung der Automatischen Differenziation einer vektor- wertigen, allgemeinen (nichtlinearen) Funktion mehrerer Veränderlicher mittels komponentenweise, vektoriell zusammengefasster skalarer Operator- überledung	EA
4.4	Anschauliche Darstellung der verketteten Automatischen Differenziation vektorwertiger, allgemeiner (nichtlinearer) Funktionen mehrerer Veränder- licher mittels komponentenweise, vektoriell zusammengefasster skalarer	
4.5	Anschauliche Darstellung einer multivariablen gegebenen Struktur als Funk- tion, die ausschließlich aus den Bausteinen der Addition/Subtraktion zweier Eingänge bzw. Signale und/oder der Multiplikation eines Eingangs bzw.	57
4.6	Signals mit einer Konstanten zusammengesetzt ist	61
47	Coometrische Beihe als Einnunktiteration unter <i>Plashbar</i> Detrachtung	62
4./	Geometrische Reine als Fixpunktiteration unter <i>Blackbox</i> -Betrachtung	03
4.8 4.9	Funktions-Auswertung der Automatisch Differenzierenden Geometrischen	65
	Reihe zur Ermittlung der Konstanten $a_0$	65
4.10	Automatisch Differenzierende Geometrische Reihe im Zustand des Equilibri-	66
		00

4.11	Wellendigitalfilter in Normalform mit aufgetrenntem rekursiven Pfad und eingefügter resistiver Quelle	. (	67
4.12	Lineares Automatisch Differenzierendes Wellendigitalfilter mit aufgetrenn- tem rekursiven Pfad und eingefügten resistiven Quellen zur Bestimmung der		
4.13	Spaltenvektoren der jeweiligen Systemmatrizen $\ldots$ Schaltung eines $RC$ -Tiefpasses und zugehörige Wellendigital-Realisierung	. (	69
	sowie dessen Betrachtung als Automatisch Differenzierendes Wellendigitalfilter		71
5.1	Systemstrukturen der Offline-Initialisierungsphase und dem Online-Initiali- sierungsschritt eines linearen Automatisch Differenzierenden Wellendigital- filtere		00
52	Systemstruktur für den Undate-Schritt mit evaktem Fixpunkt $\bar{x}$	, c	83
5.3	Geschlossene mehrdimensionale Darstellung mit modifizierten nichtlinearen		01
5.4	Detaillierte, jedoch unübersichtliche Darstellung der einzelnen Verbindungen von/zu dem globalen Berechnungs-Block für das vorgestellte Verfahren zur Auflösung topologischer, nicht-berechenbarer Schleifen als modulares	. (	04
	Wellenfluss-Diagramm	. 8	87
5.5	Vereinfachte Darstellung der einzelnen Verbindungen von/zu dem globalen Berechnungs-Block für das vorgestellte Verfahren zur Auflösung topologi-		
	scher, nicht-berechenbarer Schleifen als modulares Wellenfluss-Diagramm .	. 8	87
5.6	Schaltplan einer einfach-gebruckten T-Schaltung im Kirchhoff-Bereich	. 2	88
5./	nunktiterations-Verfahren	ç	22
5.8	Wellendigital-Realisierung der einfach-gebrückten T-Schaltung zur direk- ten Lösung des Fixpunktes mit dem neuartigen Ansatz des Automatisch		50
	Differenzierenden Wellendigitalfilters	. 8	89
5.9	Vorgeschlagene, vereinfachte Darstellung der Wellendigital-Realisierung der einfach-gebrückten T-Schaltung zur direkten Lösung des Fixpunktes mit dem neuartigen Ansatz des Automatisch Differenzierenden Wellendigitalfil-		
	ters	9	90
5.10	Einbindung nichtlinearer Elemente mit jeweils getrennten Ein- und Ausgän-	1/	~~
5.11	gen und mit jeweils vektoriell zusammengefassten Ein- und Ausgangen Verzögerungs-Element ausschließlich und unmittelbar vor dem Eingang und gleichzeitig ausschließlich und unmittelbar hinter dem Ausgang der	10	03
	kombinierten Nichtlinearität	10	05
5.12	Verzögerungs-Element ausschließlich und unmittelbar vor dem Eingang oder ausschließlich und unmittelbar hinter dem Ausgang der kombinierten		
	Nichtlinearität	10	06
5.13	Einzelne nichtlineare Tore zur Realisierung nichtlinearer Automatisch Diffe- renzierender Bauelemente	1	15
5.14	Angepasste Gesamt-Struktur zur Einbindung des nichtlinearen Automatisch Differenzierenden Bauelements und Systemstruktur während der automati- schen Offline-Initialisierung des nichtlinearen Automatisch Differenzieren-		
	den Bauelements	12	20

5.15	Systemstruktur der Online-Initialisierungsphase I eines nichtlinearen Auto- matisch Differenzierenden Wellendigitalfilters	125
5 16	Systemstruktur der Online-Initialisierungsphase II eines nichtlinearen Auto-	125
5.10	matisch Differenzierenden Wellendigitalfilters	125
5.17	Systemstruktur der Online-Initialisierungsphase III eines nichtlinearen Auto-	
	matisch Differenzierenden Wellendigitalfilters	126
5.18	Systemstruktur der Newton-Iterationsphase eines nichtlinearen Automatisch	
	Differenzierenden Wellendigitalfilters	127
5.19	Systemstruktur für den Update-Schritt eines nichtlinearen Automatisch Dif-	
	ferenzierenden Wellendigitalfilters	128
5.20	Systemstruktur zur Online-Initialisierung eines nichtlinearen Wellendigital-	
	filters mittels Operatorüberladung	130
5.21	Geschlossene mehrdimensionale Darstellung mit nichtlinearen Verschiebe-	
	operatoren für nichtlineare Wellendigital-Strukturen zur Realisierung des	
	Newton-Verfahrens mittels umschaltbaren Betriebsstufen	132
5.22	Geschlossene mehrdimensionale Darstellung mit nichtlinearen Verschiebe-	
	operatoren für nichtlineare Wellendigital-Strukturen zur Realisierung des	104
F 00	Newton-Verfahrens mittels Operatoruberladung	134
5.23	Vereinfachte Darstellung der einzelnen Verbindungen von/zu dem globalen	
	Elemente als modulares Wellenfluse Diagramm	194
5.24	Parallelisierte Version der Online Initialisierungenhasen III und III eines	134
5.24	nichtlinearen Automatisch Differenzierenden Wellendigitalfilters als Bestand	
	teile der Newton-Iterationsphase	136
5 25	Schaltplan einer doppelt gebrückten T-Schaltung im Kirchhoff-Bereich	130
5.26	Doppelt-gebrückte T-Schaltung als ringartige Struktur im Kirchhoff-Bereich	140
5 27	Wellendigital-Realisierung der doppelt-gebrückten T-Schaltung aus Abbil-	1 10
0.27	dung 5.25 zur direkten Lösung des Fixpunktes mit dem vorgeschlagenen	
	Ansatz	141
5.28	Mittlerer Quadratischen Fehler der Impulsantwort des Wellendigitalfilters	
	als doppelt-gebrückte T-Schaltung bezüglich einer Referenzsimulation für	
	den vorgeschlagenen Ansatz sowie für die Fixpunktiteration	143
5.29	Betrags-Frequenzgang der Impulsantwort des Wellendigitalfilters als doppelt-	
	gebrückte T-Schaltung für das vorgestellte Verfahren mit angepassten und	
	fehl-angepassten Torwiderständen sowie einer Referenzsimulation $\ldots$	144
5.30	Abhängigkeit von $\det(A)$ und der Konditionszahl $\kappa(A)$ bezüglich der Torwi-	
	derstände $R_p/R_p^*$ für die doppelt-gebrückte T-Schaltung	145
5.31	Abhängigkeit von $\ A^4\ _2$ und als vergrößerte Darstellung in der näheren	
	Umgebung impedanz-angepasster $R_p^*$ bezüglich der Torwiderstände $R_p/R_p^*$	
	fur die doppelt-gebruckte T-Schaltung	146
5.32	Reeller Funktionszweig $W_0(x)$ der Lambert-W-Funktion	147
5.33	Funktionsverlauf der Wright- $\omega$ -Funktion $\omega(x)$	148
5.34	Nichtlineare Dioden-Clipper-Schaltung	150
5.35	Wellendigital-Realisierung der Dioden-Clipper-Schaltung mit dem vorgestell-	1 - 0
	ten verranren	152

5.36	Ausgangsspannung der Wellendigital-Simulation und der Referenzsimulation in SPICE, MSE zwischen Wellendigital-Simulation und der Referenzsimula- tion, Anzahl der maximal benötigten Newton-Schritte zum Erreichen der Fehlerschranke, Kontraktions-Faktor und maximale Konditionszahl für impe-
	danz-angepasste $R_{D_1} = R_{D_2} = R_D$
5.37	Beschreibung identisch zu Abbildung 5.36, jedoch mit fehlangepassten $R_{D_1} = R_{D_2} = 10^{-4} \cdot R_D$ (Fall B) und $R_{D_1} = R_{D_2} = 10^4 \cdot R_D$ (Fall C) 158
5.38	Beschreibung identisch zu Abbildung 5.36, jedoch mit fehlangepassten $R_{D_1} = R_{D_2} = 10^{-8} \cdot R_D$ (Fall D) und $R_{D_1} = R_{D_2} = 10^8 \cdot R_D$ (Fall E) 159
5.39	Beschreibung identisch zu Abbildung 5.36, jedoch als vereinfachtes Newton-Verfahren mit $\widetilde{F}(r'(k_2)) = \widetilde{F}(r_0)$ (Fall F)
5.40	Beschreibung identisch zu Abbildung 5.36, jedoch mit fehlangepassten $R_{D_1} = R_{D_2} = 10^{-8} \cdot R_D$ (Fall G) und $R_{D_1} = R_{D_2} = 19 \cdot R_D$ (Fall H) und jeweils als vereinfachtes Newton-Verfahren mit $F(r'(k_2)) = F(r_0) \ldots$ 161
5.41	Beschreibung identisch zu Abbildung 5.36, jedoch als vereinfachtes Newton-Verfahren mit $\widetilde{F}(r'(k_2)) = \widetilde{F}(r_0)$ (Fall I)
5.42	Beschreibung identisch zu Abbildung 5.36, jedoch mit fehlangepassten $R_{D_1} = R_{D_2} = 10^{-8} \cdot R_D$ (Fall J) und $R_{D_1} = R_{D_2} = 18 \cdot R_D$ (Fall K) und jeweils mit $\tilde{F}(\mathbf{r}'(k_2)) = \tilde{F}(\mathbf{r}_0)$ für $k_2 = 1$ , $\tilde{F}(\mathbf{r}'(k_2)) = \tilde{D}(\mathbf{r}_0)$ für $k_2 > 1$ 163
6.1	Aufgetrennte bidirektionale <i>j</i> -te topologische Schleife unter lokaler Zweitor- Betrachtung
6.2	Auswertung von $\alpha_{11}^{(1)}(\mathbf{R}_p)$ und $\alpha_{11}^{(2)}(\mathbf{R}_p)$ in Abhängigkeit von $\mathbf{R}_p$ im Vergleich zu rechnerisch optimalen Torwiderständen $R_p^{(1)}/R_p^{(1)*}$ , $R_p^{(2)}/R_p^{(2)*}$
6.3	Auswertung von $\alpha_{22}^{(1)}(\mathbf{R}_p)$ und $\alpha_{22}^{(2)}(\mathbf{R}_p)$ in Abhängigkeit von $\mathbf{R}_p$ im Vergleich zu rechnerisch optimalen Torwiderständen $R_p^{(1)}/R_p^{(1)*}$ , $R_p^{(2)}/R_p^{(2)*}$
6.4	Schnittmengen der einzelnen $\tilde{\alpha}_{11}^{(j)*}(\mathbf{R}_p)$ und $\tilde{\alpha}_{22}^{(j)*}(\mathbf{R}_p)$ als Überlagerung von $\mu(\mathbf{R}_p)$ und vergrößerte Darstellung von $\mu(\mathbf{R}_p)$ für den Bereich lokaler und globaler Minima
6.5	Schnittmengen der einzelnen $\widetilde{\Gamma}_1^{(j)*}(\mathbf{R}_p)$ und $\widetilde{\Gamma}_2^{(j)*}(\mathbf{R}_p)$ als Überlagerung von $\Gamma_{\Sigma}(\mathbf{R}_p)$ sowie vergrößerte Darstellung von $\Gamma(\mathbf{R}_p)$ für den Bereich lokaler und globaler Minima
6.6	Sukzessive Intervall-Eingrenzung von $\mu(\mathbf{R}_p(l))$ mit Minimum bei $\mu(\mathbf{R}_p^*(l))$ und eingegrenzte Intervalle für den nachfolgenden Schritt $l + 1$ der doppelt- gebrückten T-Schaltung jeweils für die Schritte $l = 1,, 12$
6.7	Verlauf der optimalen $\mu^*(\mathbf{R}_p(l))$ , der optimalen Torwiderstände $R_p^{(1)*}(l)$ , $R_p^{(2)*}(l)$ sowie der Abstände der Abtastpunkte, $s_{R_p}^{(1)}(l)$ , $s_{R_p}^{(2)}(l)$ der sukzessiven
	Intervall-Eingrenzung für die doppelt-gebrückten T-Schaltung
6.8	Robustes Konvergenz-Verhalten bei der Ermittlung der Torwiderstände $R_p^{(1)*}(l)$ und $R_p^{(2)*}(l)$ für 1000 Optimierungen über $\mu(\mathbf{R}_p(l))$ der doppelt-gebrückten T-Schaltung mit jeweils zufällig gleich verteilten initialen Exponent-Intervallgrenzen

6.9	Robustes Konvergenz-Verhalten bei der Ermittlung der Torwiderstände	
	$R_p^{(1)*}(l)$ und $R_p^{(2)*}(l)$ für 1000 Optimierungen von $\Gamma_{\Sigma}(\boldsymbol{R}_p(l))$ der doppelt-ge-	
	brückten T-Schaltung mit jeweils zufällig gleich verteilten initialen Exponent-	
C 10	Intervallgrenzen	186
6.10	Linearisierte, total-reflektierende nichtlineare Tore als nichtlineare Automa- tisch Differenzierende Bauelemente	188
6.11	Linearisierte (globale) <i>m</i> -torige Streuung der rekursiven Pfade eines nicht-	100
	linearen Automatisch Differenzierenden Wellendigitalfilters und lokale Be-	
	trachtung der einzelnen rekursiven Pfade als lineare Eintore	188
6.12	Verläufe intuitiver Kandidaten für optimale Torwiderstände der Dioden-	
	Clipper-Schaltung	190
6.13	Auswertung von $a'_{\Sigma}(\boldsymbol{R}_p)$ im linearen Maßstab sowie im logarithmischen	
	Maßstab für die Dioden-Clipper-Schaltung	191
7.1	Generisches, nichtlineares Bauelement mit drei Anschlüssen im Kirchhoff-	
	Bereich und zugehöriges Wellendigital-Modell	199
7.2	Kirchhoff-Darstellung für ein allgemeines (nichtlineares, gedächtnisloses)	
	Bauelement mit drei Anschlüssen und angeschlossenen instantanen Ersatz-	
	Spannungsquellen	199
7.3	Getrenntes Bipolar-Transistor-Modell mit den einzelnen vorwarts- und ruck-	
	warts-aktiven Bipolar-Transistoren und das zugehorige, umgestaltete Ebers-	000
71	Moll-Modell	202
/.4	Apostz	ასკ
75	Typische Emitter-Verstärkerschaltung im Kirchhoff-Bereich	203
7.6	Wellendigital-Realisierung der Emitter-Verstärkerschaltung gemäß Abbildung	_ • /
,	7.5 unter Anwendung des vorgeschlagenen geteilt-modularen Verfahrens	209
7.7	Ausgangsspannung der Wellendigital-Simulation und der Referenzsimula-	
	tion in SPICE, MSE zwischen Wellendigital-Simulation und der Referenzsi-	
	mulation, Anzahl der maximal benötigten Newton-Schritte zum Erreichen	
	der Fehlerschranke, Kontraktions-Faktor und maximale Konditionszahl für	
	impedanz-angepasste Torwiderstände $R_B$ , $R_E$ und $R_C$ der Emitter-Verstär-	
	kerschaltung (Fall A)	210
7.8	Beschreibung identisch zu Abbildung 7.7 jedoch als vereinfachtes Newton-	
	Verfahren mit $F(r'(k_2)) = F(r_0)$ der Emitter-Verstärkerschaltung (Fall B) .	211

# Tabellenverzeichnis

2.1 2.2 2.3	Eintorige Wellendigitalelemente	14 15 16
2.4	als Signalflußgraph	19 21
4.1 4.2	Operatoren der Operatorüberladung für skalare Funktionen Operatoren der Operatorüberladung für Funktionen mehrerer	46
4.3	Veränderlicher	47
4.4	Operatorüberladung	54 64
5.1	Vier Fälle bei der Offline- und Online-Initialisierung von nichtlinearen Wel-	110
5.2	Ergänzung der vier Fälle bei der Offline- und Online-Initialisierung von nichtlinearen Wellendigitalfiltern um die Hilfsmatrizen <i>B</i> ^{''''} und <i>B</i> ^{'''''}	112
5.3	Berechnungsschritte für Funktionswert und Ableitung eines Automatisch Differenzierenden nichtlinearen Wellendigitalfilters mittels	
5.4	Operatorüberladung	131
5.5	Auflistung der Simulations-Parameter und Konvergenz-Eigenschaften der Fäl- le A bis F der Dioden-Clipper-Schaltungs-Simulation für das exakte Newton-	150
5.6	Auflistung der Simulations-Parameter und Konvergenz-Eigenschaften der Fälle F bis H der Dioden-Clipper-Schaltungs-Simulation für das vereinfachte	153
5.7	Newton-Verfahren	154
5.8	Konvergenz-Matrix und dem Fixpunktiterations-Verfahren (PR) sowie der Pseudo-Sekanten-Methode (PSM)	155
	Fälle I bis K der Dioden-Clipper-Schaltungs-Simulation für das vereinfachte Newton-Verfahren und diagonaler, vereinfachter Konvergenz-Matrix	156

# Symbolverzeichnis

77	Kömer der gengen Zehlen
R	Körper der reellen Zahlen
$\mathbb{C}$	Körper der komplexen Zahlen
x	Skalar ¹
$\boldsymbol{x}$	Vektor ²
X	Matrix ³
$oldsymbol{X}^T$	Transponierte der Matrix X
$X^H$	Adjungierte der Matrix $\boldsymbol{X}$ , also komplexe Konjugation der Elemente von $\boldsymbol{X}^T$
$\boldsymbol{X}^{-1}$	Inverse der Matrix $X$
$oldsymbol{x}_i,oldsymbol{X}_i$	$i$ -ter Spaltenvektor der Matrix $oldsymbol{X}$
$oldsymbol{e}_i$	<i>i</i> -ter kanonischer Einheitsvektor
$1_n$	Einsvektor $(1 \ \cdots \ 1)^T$ der Länge $n$
$I_n$	Einheitsmatrix der Dimension $n \times n$
Ι	Einheitsmatrix, die Dimension ergibt sich aus dem Kontext
$0_n$	Nullvektor der Länge n
0	Nullvektor, die Länge ergibt sich aus dem Kontext
f	Skalarwertige Funktion
$f', f'', \ldots$	Erste, Zweite, usw. Ableitung der skalarwertigen Funktion $f$
f	Vektorwertige Funktion
F	Jacobimatrix der vektorwertigen Funktion $f$ (bei mehreren Veränderlichen)

¹Bestimmte Skalare werden stellenweise in der Form  $x', x'', \ldots$  notiert. Hierbei ist die Kennzeichnung ", " abgrenzend zur Ableitung einer Funktion zu verstehen.

²Bestimmte Vektoren werden stellenweise in der Form  $x', x'', \dots$  notiert. Hierbei ist die Kennzeichnung ", " abgrenzend zur Ableitung einer Funktion zu verstehen.

³Bestimmte Matrizen werden stellenweise in der Form  $X', X'', \ldots$  notiert. Hierbei ist die Kennzeichnung "' " abgrenzend zur Ableitung einer Funktion zu verstehen.