Schriftenreihe des Lehrstuhls für Agrartechnik in den Tropen und Subtropen der Universität Hohenheim

Adnan Mukhtar

Effect of convective air drying on the enzymatic activity of dried mango

UNIVERSITÄT HOHENHEIM

INSTITUT FÜR AGRARTECHNIK Agrartechnik Tropen und Subtropen Prof. Dr. Joachim Müller

Effect of convective air drying on the enzymatic activity of dried mango

Dissertation Submitted in fulfillment of the regulations for the degree of "Doktor der Agrarwissenschaften" (Dr.sc.agr. / Ph.D. in Agricultural Sciences)

> to the Faculty of Agricultural Sciences

> > presented by

Adnan Mukhtar Born in Gujranwala, Pakistan

2022

This thesis was accepted as a doctoral dissertation in fulfillment of the requirements for the degree "Doktor der Agrarwissenschaften" by the Faculty of Agricultural Sciences at Universität Hohenheim on 23.06.2022.

Date of oral examination: 17.01.2023

Examination Committee

Prof. Dr. Joachim Müller	(Supervisor and Reviewer)
Prof. Dr. Oliver Hensel	(Co-Reviewer)
Prof. Dr. Andrea Kruse	(Additional examiner)
Prof. Dr. Thilo Streck	(Deputy of the Dean)

Schriftenreihe des Lehrstuhls für Agrartechnik in den Tropen und Subtropen der Universität Hohenheim herausgegeben von Prof. Dr. Joachim Müller

Band 2023/26

Adnan Mukhtar

Effect of convective air drying on the enzymatic activity of dried mango

D 100 (Diss. Universität Hohenheim)

Shaker Verlag Düren 2023

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Zugl.: Hohenheim, Univ., Diss., 2023

Copyright Shaker Verlag 2023 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-8989-9 ISSN 1867-4631

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Phone: 0049/2421/99011-0 • Telefax: 0049/2421/99011-9 Internet: www.shaker.de • e-mail: info@shaker.de

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor Prof. Dr. Joachim Müller for his excellent guidance, encouragement, kind support, and outstanding suggestions during the preparation of the manuscripts and thesis. I would also like to thank Dr. Sajid Latif for his guidance, support, and valuable discussions. I am also very grateful to Dr. Ana Salvatierra-Rojas, Dr. Oluwatoyin Ayetigbo, Dr. Bilhat Leta Chala, and Dr. Klaus Meissner for their insightful guidance and helpful suggestions on my research.

Acknowledgement is also express to the University of Agriculture Faisalabad, Pakistan for providing the scholarship grant through (PS-2(11)FDP/15/22241) project.

In addition, I would like to thank my colleagues and office-mates at the Institute of Agricultural Engineering, Tropics and Subtropics Group (440e), with whom it was very pleasant to work. A very special thanks goes to Mrs. Sabine Nugent for her support in editing my articles and thesis. I would also like to thank Sarah Fleischmann, Olga Gotra, Ute Waldeck, and Dorothea Hirschbach-Müller for their help with the laboratory experiments.

Finally, I would like to thank my entire family, especially my parents and my wife, for their love and support, which are always a blessing to me.

Adnan Mukhtar

Table of contents

Acknowledgementsii			
Table	of con	itents iii	
List o	f figur	esvi	
List o	f table	svii	
1	Gene	ral introduction1	
1.1	Mar	ngo (Mangifera indica L.)1	
1.2	Mar	ngo fruit characteristics1	
1.3	Con	vective drying	
1.4	Pote	ential and use of dried mango5	
1.5	Futi	re prospects and challenges	
1.6	Obj	ectives and structure of research7	
1.7	Ref	erences	
2	Part	I: Effect of heat exposure on activity degradation of enzymes in mango	
variet	ies Sin	dri, SB Chaunsa, and Tommy Atkins during drying17	
2.1	Abs	tract	
2.2	Intro	oduction17	
2.3	Mat	erials and methods	
	2.3.1	Mango varieties	
	2.3.2	Enzyme activity assays	
	2.3.3	Incubation trials to determine the heat-sensitivity of enzymes in fresh mango21	
	2.3.4	Hot air convective thin-layer drying of mango slabs	
	2.3.5	Measurement of enzyme activity in fresh and dried mango	
	2.3.6	Modeling of enzyme activity kinetics during drying	
	2.3.7	Statistical analysis	
2.4	Res	ults and discussion	
	2.4.1	Effect of incubation temperature on enzyme activity in fresh mango25	
	2.4.2	Polyphenoloxidase (PPO) activity of fresh and dried mango	

	2.4.3 Catalase activity of fresh and dried mango	28
	2.4.4 Drying kinetics of catalase activity	30
2.5	Conclusions	32
2.6	Appendix A	34
2.7	References	
3	Part II: Effect of hot-air convective drying on activity retention of amyl	ase and
invert	tase in dried mango of varieties Sindri, SB Chaunsa, and Tommy Atkins	43
3.1	Abstract	43
3.2	Introduction	43
3.3	Materials and methods	45
	3.3.1 Raw materials	45
	3.3.2 Drying experiments	45
	3.3.3 Enzyme extraction in fresh and dried mango	46
	3.3.4 Amylase activity assay	47
	3.3.5 Invertase activity assay	47
	3.3.6 Kinetics considerations of amylase and invertase	47
	3.3.7 Maltose and glucose concentrations in fresh and dried mango	48
	3.3.8 Statistical analysis	48
3.4	Results and discussion	48
	3.4.1 Amylase activity in fresh and dried samples	49
	3.4.2 Invertase activity in fresh and dried samples	50
	3.4.3 Residual activity of amylase and invertase during mango drying	51
	3.4.4 Reducing sugar (maltose and glucose)	53
3.5	Conclusions	54
3.6	References	56
4	Part III: Catalase activity in hot-air dried mango as an indicator of heat e	xposure
for ra	apid detection of heat stress	61
4.1	Abstract	61

6 7	Summary	
6	Summary	
		00
5.7	References	92
5.6	Outlook	91
5.5	Catalase activity as an indicator of heat exposure	88
5.4	Effect of convective drying on heat-resistant enzyme activity of mango	86
5.3	Effect of convective drying on heat-sensitive enzyme activity of mango	84
5.2	Heat incubation trials of enzymes	83
5.1	Mango drying	82
5	General discussion	82
4.7	··· References	78
4.6	Appendix B	
4.5	Conclusions	
	4.4.2 Quality prediction test	
4.4	A 1 Color changes	
	4.3.5 Statistical analysis	
	4.3.4 Quality prediction test	64
	4.3.3 Colorimetric measurement	64
	4.3.2 Drying process	64
	4.3.1 Materials	63
4.3	Materials and methods	63

List of figures

Figure 1.1 Global mango harvest area and production from 1971 to 2020. Data is derived from
FAOstat (2020)
Figure 2.1 Enzyme activity of amylase, invertase, polyphenol oxidase (PPO) and catalase of
mango variety Samar Bahisht (SB) Chaunsa after 10 min incubation of enzyme extract at
various temperatures
Figure 2.2 Polyphenol oxidase (PPO) activity in fresh and dried mango of the varieties Sindri,
SB Chuansa, and Tommy Atkins
Figure 2.3 Catalase activity in fresh and dried mango of the varieties Sindri, SB Chuansa, and
Tommy Atkins
Figure 2.4 (a) Kinetics of catalase activity; (b) Arrhenius plot for the energy of deactivation of
catalase; (c) product surface temperature; (d) product internal temperature during drying of
mango variety Sindri at 40 °C, 60 °C, and 80 °C; air velocity 1.0 m s^{-1} or 1.4 m $s^{-1}31$
Figure 3.1 Amylase activity in fresh and dried mango of the varieties Sindri, SB Chaunsa, and
Tommy Atkins
Figure 3.2 Invertase activity in fresh and dried mango varieties Sindri, SB Chaunsa, and
Tommy Atkins
Figure 3.3 Residual activity Λ/Λ_{-} and Arrhenius plot for the energy of deactivation of (a b)
ampless and (a d) invertess; and (a) water estivity during drying of manage variety. Sindri et
40 °C, 60 °C, and 80 °C; air velocity 1.0 m s ⁻¹ or 1.4 m s ⁻¹
Figure 3.4 (a) Maltose and (b) glucose concentrations in fresh and dried samples of varieties
Sindri, SB Chaunsa, and Tommy Atkins
Figure 4.1 Dried mango slices and cuboids (10×10 mm) of 40 °C, 60 °C and 80 °C65
Figure 4.2 Calibration curve for disc rising time versus catalase units per mL
Figure 4.3 Calibration curve for absorbance versus catalase units per mL68

Figure 4.5 (A) Flotation time (s), (B) activity rate (mm s⁻¹), (C) density (g cm⁻³) and (D) digital and SEM micrographs of the surface of mango slices dried at 40 °C, 60 °C and 80 °C......72

Figure 4.7 Absorbance and catalase activity (units mL^{-1}) of fresh mango and mango dried at 40 °C, 60 °C and 80 °C against the fixed concentration of 0.036 % H₂O₂ substrate (initial absorbance 0.54–0.58 a.u.) for 10 min at 25 °C.

List of tables

Table 2.1 Brix, moisture content (MC) percentage wet basis, water activity (a_w) , and drying duration of mango varieties Sindri, SB Chaunsa and Tommy Atkins at temperatures 40 °C to 80 °C; air velocities 1.0 m s⁻¹ and 1.4 m s⁻¹......23