Untersuchungen zur Eigenspannungsentstehung bei der Wärmebehandlung von Wälzlagerkomponenten

Vom Fachbereich Produktionstechnik der

UNIVERSITÄT BREMEN

zur Erlangung des Grades

Doktor-Ingenieur

genehmigte

DISSERTATION

von

Dipl.-Ing. Marco Burtchen

Gutachter: Prof. Dr. Ing. Hans-Werner Zoch

Visiting Prof. Stathis Ioannides, PhD; Imperial College London

Tag der mündlichen Prüfung: 28.11.2008

Forschungsberichte aus der Stiftung Institut für Werkstofftechnik Bremen

Band 44

Marco Burtchen

Untersuchungen zur Eigenspannungsentstehung bei der Wärmebehandlung von Wälzlagerkomponenten

D 46 (Diss. Universität Bremen)

Shaker Verlag Aachen 2009

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Bremen, Univ., Diss., 2008

Copyright Shaker Verlag 2009 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8322-7928-8 ISSN 1437-7659

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit am IWT - Stiftung Institut für Werk-

stofftechnik - in Bremen.

Zunächst möchte ich mich bei allen Mitarbeitern des Instituts für die konstruktive Zusammenar-

beit bedanken

Herrn Prof. Dr.-Ing. Hans-Werner Zoch danke ich besonders für die sorgfältige Durchsicht, die

konstruktive Kritik und für die Übernahme des Hauptreferates.

Herrn Stathis Ioannides, PhD danke ich für die wertvollen Ratschläge und die Übernahme des

Korreferates.

Ebenso danke ich Herrn Prof. Dr.-Ing. Udo Fritsching und Herrn Prof. Dr.-Ing. habil Klaus-

Dieter Thoben für die Übernahme des Prüfungsamtes.

Ebenso gilt mein Dank Herrn Prof. Dr.-Ing. habil. Franz Hoffmann für die vielen anregenden

Gespräche und die freundliche Unterstützung bei den durchgeführten Untersuchungen. Herrn

Dr.-Ing. Thomas Lübben möchte ich für die kritische Erstdurchsicht der Arbeit und vor allem für

die entgegengebrachte Unterstützung danken.

Göteborg, im Dezember 2008.

Marco Burtchen

1	Einleit	tung und Zie	elsetzung	1	
2	Kenntı	nisstand		3	
	2.1	Wärmebe	ärmebehandlung von Wälzlagerkomponenten		
		2.1.1	Abschreckprozess	3	
		2.1.2	Martensitische Umwandlung	5	
		2.1.3	Isothermische Umwandlung in der Bainitstufe	7	
		2.1.4	Einsatzhärten	9	
		2.1.4.1	Aufkohlen	11	
		2.1.4.2	Härten	14	
		2.1.5	Induktive Randschichthärtung mit Sprühabschreckung	16	
		2.1.5.1	Erwärmen	18	
		2.1.5.2	Abschrecken	21	
	2.2	Eigenspa	nnungsausbildung	23	
		2.2.1	Eigenspannungsausbildung während der martensitischen Härtung	g 25	
		2.2.1.1	Eigenspannungsausbildung während der martensitischen Härtung	g	
			mit hohen Abkühlintensitäten	30	
		2.2.2	Eigenspannungsausbildung während der isothermischen		
			Umwandlung in der Bainitstufe	32	
		2.2.3	Eigenspannungsausbildung während der Einsatzhärtung	33	
		2.2.4	Eigenspannungsausbildung während der induktiven		
			Randschichthärtung	35	
	2.3	Eigenspa	nnungsmessung	38	
		2.3.1	Röntgenographische Eigenspannungsmessung	38	
		2.3.2	Eigenspannungsmessung mittels Bohrlochverfahren	39	
	2.4	Simulation	on von Wärmebehandlungsprozessen	40	
		2.4.1	Physikalische Modellbildung	42	
		2.4.1.1	Temperaturentwicklung	42	
		2.4.1.2	Diffusionsgesteuerte Phasenumwandlungen	44	
		2.4.1.3	Martensitische Umwandlung	47	
		2.4.1.4	Mechanisches Verhalten	47	
		2.4.1.5	Diffusion	50	
		2416	Induktion	51	

		2.4.2	Geometrie und Netzerstellung	52	
		2.4.3	Anfangs- und Randbedingungen	53	
		2.4.3.1	Thermische Randbedingungen	53	
		2.4.3.2	Randbedingungen für die Kohlenstoffübertragung	54	
		2.4.3.3	Elektromagnetische Randbedingungen	54	
		2.4.3.4	Mechanische Randbedingungen	54	
		2.4.4	Durchführung und Auswertung von Simulationsrechnungen	55	
		2.4.4.1	Auswertung von Simulationsergebnissen	56	
		2.4.4.2	Aussagekraft von Simulationsergebnissen	56	
3	Beschi	eibung der	betrachteten Bauteile und Werkstoffe	57	
	3.1	Beschrei	bung der betrachteten Bauteile	57	
		3.1.1	Beschreibung der Werkstoffe im Ausgangszustand	58	
		3.1.1.1	CRB1, CRB2, DGBB, Zylinder	58	
		3.1.1.2	CARB	59	
		3.1.2	Verwendete Materialdaten für die Wärmebehandlungssimulation	60	
		3.1.2.1	100Cr6 (SAE 52100, DIN 1.3505)	61	
		3.1.2.2	20NiCrMo7 (20MnCr5, SAE 5120, DIN 1.7147)	63	
		3.1.3	Vernetzung der Bauteile zur Simulationsrechnung	65	
	3.2	Beschrei	bung des Wärmeübergangs	67	
4	Unters	uchungen z	zur Validierung der Simulation	70	
	4.1	Experime	entelle Untersuchungen im Vergleich mit Simulationsrechnungen	71	
		4.1.1	Martensitische Umwandlung	71	
		4.1.2	Isothermische Umwandlung in der Bainitstufe	75	
		4.1.3	Einsatzhärtung	78	
		4.1.4	Induktive Randschichthärtung	82	
	4.2	Bewertui	ng des Simulationswerkzeuges	87	
5	Unters	Untersuchungen zum Spannungsaufbau während des Härtens			
	5.1	Kontinui	erliche Abschreckung	92	
		5.1.1	Martensitische Härtung	92	
		5.1.2	Abschrecken mit hohen Abkühlintensitäten	97	
		5.1.3	Variation des Wärmeijbergangskoeffizienten	102	

		5.1.4	Gebrochenes bzw. gestuftes Abschrecken	106
	5.2	Isothermise	che Umwandlung in der Bainitstufe	109
		5.2.1	Analyse der Temperaturverläufe im Bauteil	109
		5.2.2	Einfluss innerer Spannungen auf die isothermische Umwandlung	
			in der Bainitstufe	116
	5.3	Einsatzhärt	tung	121
		5.3.1	Kontinuierliche Abschreckung	121
		5.3.2	Abschrecken mit hohen Abkühlintensitäten	125
		5.3.3	Variation des Wärmeübergangskoeffizienten	130
		5.3.4	Gestuftes Abschrecken	132
	5.4	Induktive I	Randschichthärtung	133
		5.4.1	Variation der Frequenz	136
		5.4.1.1	Erwärmen mit 10 kHz	137
		5.4.1.2	Erwärmen mit 14 kHz	138
		5.4.2	Variation des Wärmeübergangskoeffizienten beim Abschrecken	140
		5.4.2.1	Gasabschreckung	142
		5.4.2.2	Ölabschreckung	143
		5.4.2.3	Sprühabschreckung	144
6	Zusamn	nenfassende	Bewertung der Simulationsergebnisse	146
	6.1	Kontinuier	liche Abschreckung	146
	6.2	Isothermise	che Umwandlung in der Bainitstufe	150
	6.3	Einsatzhärt	tung	152
	6.4	Induktive I	Randschichthärtung	155
7	Zusamn	nenfassung.		159
8	Ausblic	k		161
9	Symbol	verzeichnis		162
	9.1	Formelzeic	chen, lateinische Buchstaben	162
	9.2	Formelzeic	chen, griechische Buchstaben	164
	1.4	- OITHUIZUIC	/11011, g110011100110 Duchbuotii	104

Inhalt

10	Literaturverzeichnis	166
11	Anhang	176