Klaus Röbenack

Beobachterentwurf für nichtlineare Zustandssysteme mit Hilfe des Automatischen Differenzierens Dr.-Ing. Dipl.-Math. Klaus Röbenack Institut für Regelungs- und Steuerungstheorie Fakultät Elektrotechnik und Informationstechnik Technische Universität Dresden Mommsenstr. 13 01062 Dresden

klaus@roebenack.de

Berichte aus der Steuerungs- und Regelungstechnik

Klaus Röbenack

Beobachterentwurf für nichtlineare Zustandssysteme mit Hilfe des Automatischen Differenzierens

Shaker Verlag Aachen 2003

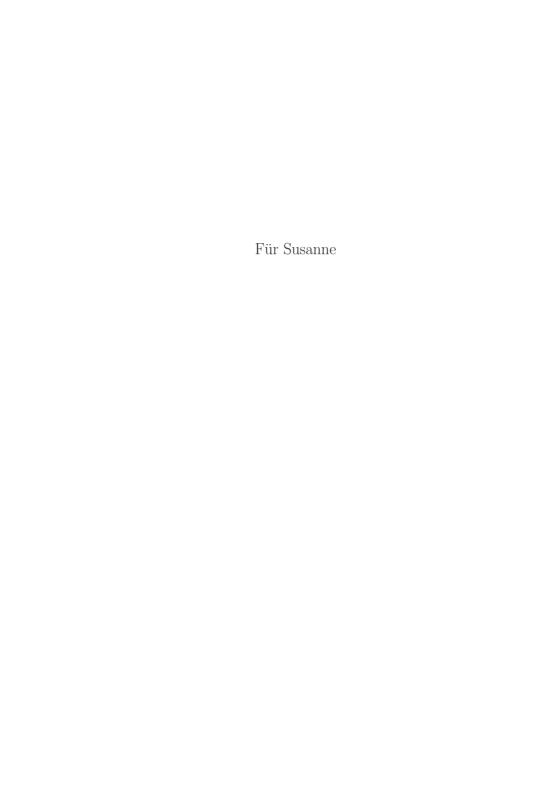
Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Röbenack, Klaus:

Beobachterentwurffür nichtlineare Zustandssysteme mit Hilfe des Automatischen Differenzierens/Klaus Röbenack.

Aachen: Shaker, 2003

(Berichte aus der Steuerungs- und Regelungstechnik)


ISBN 3-8322-1069-5

Copyright Shaker Verlag 2003 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 3-8322-1069-5 ISSN 0945-1005

> Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407/9596-0 • Telefax: 02407/9596-9 Internet: www.shaker.de • eMail: info@shaker.de

Vorwort

Das vorliegende Buch entstand während meiner Tätigkeit an der Technischen Universität Dresden. Es nimmt Bezug auf meine Forschungsarbeiten am Institut für Regelungsund Steuerungstheorie der Fakultät Elektrotechnik und Informationstechnik. Die Arbeit enthält wesentliche Ergebnisse zum nichtlinearen Beobachterentwurf auf der Basis des Automatischen Differenzierens. Das Buch stimmt weitgehend mit meiner am Institut für Wissenschaftliches Rechnen der Fakultät Mathematik und Naturwissenschaften erstellten Diplomarbeit überein. Ergänzt wurden Abschnitte zum Beobachterentwurf für Mehrgrößensysteme.

Es ist mir ein Bedürfnis, Herrn Prof. Dr.-Ing. Dr.
rer.nat. K. Reinschke und Herrn Prof. A. Griewank zu danken; sie gewährten mir großzügige Unterstützung und haben es nie an Rat und Anregung fehlen lassen.

Frau Dr. rer. nat. A. Walther danke ich für die Betreuung meiner Diplomarbeit, für zahlreiche Hinweise und inspirierende Gespräche. Herrn Dipl.-Math. O. Vogel schulde ich Dank für seine Hilfsbereitschaft im Umgang mit dem Programmpaket ADOL-C. Herrn Prof. Dr.-Ing. Dr.h.c. M. Zeitz vom Institut für Systemdynamik und Regelungstechnik der Universität Stuttgart möchte ich für seine Hinweise zum erweiterten Luenberger-Beobachter danken.

Von meinen Arbeitskollegen habe ich manche Anregung erhalten. Ich danke insbesondere Herrn Dr. J. Rudolph und Herrn Dr. A. Lynch für viele interessante Diskussionen. Herrn Dipl.-Ing. J. Winkler danke ich für die angenehme Zusammenarbeit. Außerdem möchte ich mich bei Herrn Dipl.-Ing. U. Ließ (Dresden) für seine Vorschläge zur Implementierung einer Taylorarithmetik bedanken.

Mein Dank gilt ferner Herrn PD Dr.rer.nat.habil. V. Reitmann (Max-Planck-Institut für Physik komplexer Systeme, Dresden); seine Vorlesung zur Bifurkationstheorie hatte maßgeblichen Einfluß auf meinem Entschluß, den Diplomstudiengang Mathematik als Zweitstudium zu absolvieren.

Dresden, im Dezember 2002

Klaus Röbenack

Inhaltsverzeichnis

1	Ein	leitung	1			
2	Bec	bachtbarkeitsmatrizen	5			
	2.1	Lineare zeitinvariante Systeme	5			
	2.2	Lineare zeitvariante Systeme	7			
	2.3	Nichtlineare Systeme	9			
	2.4	Mehrgrößensysteme und Beobachtbarkeitsindizes	10			
3	Ent	Entwurfsverfahren 1				
	3.1	Luenberger-Beobachter	15			
	3.2	Arbeitspunktbeobachter	17			
	3.3	Zeitvariante Ackermann-Formel	19			
	3.4	Nichtlineare Ackermann-Formel	23			
	3.5	Verallgemeinerungen der Ackermann-Formel für Mehrgrößensysteme $\ \ .$	28			
	3.6	High-Gain-Beobachter für Eingrößensysteme	34			
	3.7	High-Gain-Beobachter für Mehrgrößensysteme	38			
4	Aut	tomatisches Differenzieren	45			
	4.1	Vergleich mit symbolischem und numerischem Differenzieren	45			
	4.2	Vorwärtsmodus	46			
	4.3	Rückwärtsmodus	49			
	4.4	Taylorkoeffizienten	49			
5	Bec	bachterentwurf mit Automatischem Differenzieren	55			
	5.1	Lie-Ableitungen	55			
	5.2	Berechnung der nichtlinearen Beobachtbarkeitsmatrix	57			
	5.3	Zeitvariante Systeme und Variationsgleichung	61			
	5.4	Beobachterverstärkung nach Ackermann-Formel	62			
	5.5	Auswahlmatrix und Mehrgrößensysteme	67			
	5.6	Anbindung von ADOL-C an Scilab	69			

_			71		
6	8				
	6.1	Lorenz-System	71		
	6.2	Inverses Pendel mit Gleichstromantrieb	75		
	6.3	Synchronmotor mit skalaren Ausgängen	81		
	6.4	Synchronmotor mit vektoriellem Ausgang	84		
	6.5	Doppelpendel	88		
7	Zus	ammenfassung	91		
A	Syn	nbolverzeichnis	93		
	A.1	Allgemeine Symbole	93		
	A.2	Differential operatoren	94		
В	Her	leitung der Ackermann-Formel	95		
	B.1	Lineare zeitvariante Systeme	95		
	B.2	Lineare zeitinvariante Systeme	99		
Li	terat	urverzeichnis	101		