"Modellbasierte Multiparameteroptimierung für die Planung und Durchführung gelenkerhaltender Umstellungsosteotomien"

Von der Fakultät für Elektrotechnik und Informationstechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Ingenieur Erik Schkommodau

aus Hoyerswerda

Berichter: Univ.-Prof. Dr. rer. nat. Günter Rau

Univ. Prof. Dr.-Ing. Karl-Friedrich Kraiss

Tag der mündlichen Prüfung: 4. Februar 2005

Erik Schkommodau

Modellbasierte Multiparameteroptimierung für die Planung und Durchführung gelenkerhaltender Umstellungsosteotomien

Helmholtz-Institut

für Biomedizinische Technik an der RWTH Aachen

Shaker Verlag D 82 (Diss. RWTH Aachen)

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

Zugl.: Aachen, Techn. Hochsch., Diss., 2005

Copyright Shaker Verlag 2005 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 3-8322-3847-6 ISSN 1430-7316

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407/95 96 - 0 • Telefax: 02407/95 96 - 9 Internet: www.shaker.de • eMail: info@shaker.de

1.	Eir	nleitung	7
2	M	edizinischer Hintergrund	9
		Korrekturosteotomien an den unteren Extremitäten versus	••••••
_		Totalendoprothetik	Q
2	.2	Konventionelle Operationstechniken zur Umstellung der unteren	
_		Extremitäten	11
	2.2		
		2.2 Operationsdurchführung	
3.	Sta	and der Technik und Problemstellung	21
4.	Mo	odellierung und informationstechnischer Lösungsansatz	29
		Allgemeiner Lösungsansatz	
4		Schnittstellendefinition des Planungssystems	
4	.3	Anatomiemodellierung	33
	4.3	3.1 Koordinatensysteme des Femurs	34
	4.3	3.2 Koordinatensysteme der Tibia	37
	4.3	3.3 Koordinatensystem des Acetabulums	38
	4.3	3.4 Modell des deformierten Knochens	39
	4.3	3.5 Mathematische Beschreibung der Umstellungsosteotomie	39
	4.3	3.6 Definition der Fehlstellungen am 3D-Modell	42
5.	Au	uswahl und Implementierung eines Optimierungsverfahrens	45
5	.1	Identifikation und Formulierung der Optimierungsziele	45
5	.2	Identifikation und Formulierung notwendiger	
		Optimierungsnebenbedingungen	46
5	.3	Normierungsfilter	49
5	.4	Optimierungsverfahren	52
		4.1 Klassifikation der Optimierungsverfahren	
	5.4	1.2 Lineare Optimierungsalgorithmen	
	5.4		
	5.4	8 r 8	
		4.5 Auswahl	
5		Implementierung der Optimierungsmethoden	
	5.5	5.1 Systematische Suche – Methode A	
	5.5		
	5.5	5.3 Sequenzielle-Quadratische-Programmierung (SQP) – Methode C	70

6. Pl	lanungssystementwicklung	91
6.1	Informationsmanagement	91
6.2	Strukturierung der Benutzerschnittstelle	94
6.2	2.1 Physikalische Benutzerschnittstelle	94
6.2	2.2 Struktur des Dialogsystems	94
6.3	Implementierung des geometrischen Modells	97
6.4	Interaktion mit dem geometrischen Modell	100
6.5	Bestimmung der mechanischen Achsen des Kniegelenkes	102
7. E	valuierung des Planungssystems	105
7.1	Akquisition des geometrischen Planungsmodells	106
7.2	Einfluss der Röntgenbildauflösung	107
7.3	Identifikation der kinematischen Knieachsen	108
7.3	3.1 Platzierung der Referenzbasen	109
7.3	3.2 Verfahrensspezifische Parameter	109
7.3	3.3 Objektivität des Verfahrens	110
7.3	3.4 Fixierung des Tibia Rigid Bodys	111
7.4	Einfluss der Steuerparameter der Optimierungsmethoden	111
7.5	Einfluss der Optimierungsmethode	
7.6	Einfluss von Osteotomie- und Osteosynthesefehlern	120
7.7	Osteosynthese unter Laborbedingungen	124
7.8	K ostenabschätzung	128
7.3	8.1 Hüftgelenk	
7.3	8.2 Kniegelenk	131
8. Zı	usammenfassung und Ausblick	133
9. Li	iteratur	137
10.A	nhang	147
10.1	Begriffserklärungen	147
	2 Mathematische Herleitungen	
10	0.2.1 Koordinaten der affinen Transformation des 3D-Raumes in	
	Abhängigkeit von der Rotationsnormalen, dem Drehwinkel und dem	
	Verschiebungsvektor	149
10	0.2.2 Exakte Berechnung des nicht überdeckten Anteiles des	
	transformierten ebenen Zylinderschnittes	154

10.2.3 Approximative Berechnung des nicht überdeckten Anteiles des transformierten ebenen Zylinderschnittes für kleine Transformation	en 161
10.2.4 Herleitung der Lagebeschränkung der Schnittebenen bei der	
Keilosteotomie	164
10.2.5 Herleitung der Beschränkung auf die Nichtdurchdringung der	
Knochensegmente bei der Keilosteotomie	167
Lebenslauf	173