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Preface

This book attempts to teach computer programming to the complete beginner using the C
language. As such, it assumes you have no knowledge whatsoever about programming. And if
you are worried that you are not good at high-school mathematics, don’t be. It is a myth that
you must be good at mathematics to learn programming. In this book, a knowledge of primary
school mathematics is all that is required—basic addition, subtraction, multiplication, division,
finding the percentage of some quantity, finding an average or the larger of two quantities.

Some of our most outstanding students over the last thirty years have been people with little
mathematics background from all walks of life—politicians, civil servants, sports people,
housewives, secretaries, clerical assistants, artists, musicians and teachers. On the other hand,
we’ve had mathematical folks who didn’t do as well as might be expected.

What willbe an asset is the ability to think logically or to follow a logical argument. If you are
good at presenting convincing arguments, you will probably be a good programmer. Even if
you aren’t, programming is the perfect vehicle for teaching logical thinking skills. You should
learn programming for these skills even if you never intend to become a serious programmer.

The main goal of this book is to teach fundamental programming principles using C, one of the
most widely used programming languages in the world today. C is considered a ‘modern’
language even though its roots date back to the 1970s. Originally, C was designed for writing
‘systems’ programs—things like operating systems, editors, compilers, assemblers and
input/output utility programs. But, today, C is used for writing all kinds of applications
programs as well— wordprocessing programs, spreadsheet programs, database management
programs, accounting programs, games, educational software—the list is endless.

However, this book is more about teaching programming basics than it is about teaching C. We
discuss only those features and statements in C that are necessary to achieve our goal. Once
you learn the principles well, they can be applied to any language.

Chapter 1 gives an overview of the programming process. Chapter 2 describes the basic
building blocks needed to write programs. Chapter 3 explains how to write programs with the
simplest kind of logic—sequence logic. Chapter 4 shows how to write programs which can
make decisions. Chapter 5 explains the notion of ‘looping’ and how to use this powerful
programming idea to solve more interesting problems. Chapter 6 deals with the oft-neglected,
but important, topic of working with characters. Chapter 7 introduces functions—the key
concept needed for writing large programs. And Chapter 8 tackles the nemesis of many would-
be programmers—array processing.

The first step in becoming a good programmer is learning the syntax rules of the programming
language. This is the easy part and many people mistakenly believe that this makes them a
programmer. They get carried away by the cosmetics—they learn the features of a language
without learning how to use them to solve problems. Of course, you must learn some features.
Butitis far better to learn a few features and be able to use them to solve many problems rather
than learn many features but can’t use them to solve anything. For this reason, this book
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introduces a feature (an if statement, say) and then discusses many examples to illustrate how
the feature can be used to solve different problems.

This book is intended for anyone who is learning programming for the first time, regardless of
age or institution. The material has been taught successfully to students preparing for high-
school examinations in Computer Studies or Information Technology, students at college,
university and other tertiary-level institutions.

The presentation is based on the experience that many people have difficulty in learning
programming. To try and overcome this, we use an approach which provides clear examples,
detailed explanations of very basic concepts and numerous interesting problems (not just
artificial exercises whose only use is to illustrate some language feature).

While computer programming is essentially a mental activity and you can learn a fair amount
of programming from just reading the book, it is important that you “get your hands dirty” by
writing and running programs. One of life’s thrills is to write your first program and get it to
run successfully on a computer. Don’t miss out on it.

But do not stop there. The only way to learn programming well is to write programs to solve
new problems. The end-of-chapter exercises are a very rich source of problems, a result of the
author’s more than 40 years in the teaching of programming.

Thank you for taking the time to read this book. I hope your venture into programming is a
successful and enjoyable one.

Noel Kalicharan
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