Noel Kalicharan
Christian Posthoff (Hrsg.)

C Programming for Beginners

SHAKER

C

Programming

For Beginners

Noel Kalicharan

Senior Lecturer, Computer Science
The University of the West Indies
St. Augustine, Trinidad

First published September 2005
Republished August 2008

Revised 2015, 2020

© Noel Kalicharan, 2005, 2008, 2015, 2020
noelkali@gmail.com
noel.kalicharan@sta.uwi.edu

Berichte aus der Informatik

Dr. Noel Kalicharan

herausgegeben von Prof. Dr. Christian Posthoff

C Programming for Beginners

Shaker Verlag
Duren 2020

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the Internet at
http://dnb.d-nb.de.

Copyright Shaker Verlag 2020

All rights reserved. No part of this publication may be reproduced, storedin a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
ofthe publishers.

Printedin Germany.

ISBN 978-3-8440-7422-2

ISSN 0945-0807

Shaker Verlag GmbH « Am Langen Graben 15a « 52353 Diren

Phone: 0049/2421/99011-0 + Telefax: 0049/2421/99011-9
Internet: www.shaker.de « e-mail: info@shaker.de

Dedicated to

My esteemed colleague and friend

Professor Christian Posthoff

and his wife

Barbara

My children

Anushka Nikita
&

Saskia Anyara

My grand-daughter
Vaishnavi

Preface

This book attempts to teach computer programming to the complete beginner using the C
language. As such, it assumes you have no knowledge whatsoever about programming. And if
you are worried that you are not good at high-school mathematics, don’t be. It is a myth that
you must be good at mathematics to learn programming. In this book, a knowledge of primary
school mathematics is all that is required—basic addition, subtraction, multiplication, division,
finding the percentage of some quantity, finding an average or the larger of two quantities.

Some of our most outstanding students over the last thirty years have been people with little
mathematics background from all walks of life—politicians, civil servants, sports people,
housewives, secretaries, clerical assistants, artists, musicians and teachers. On the other hand,
we’ve had mathematical folks who didn’t do as well as might be expected.

What willbe an asset is the ability to think logically or to follow a logical argument. If you are
good at presenting convincing arguments, you will probably be a good programmer. Even if
you aren’t, programming is the perfect vehicle for teaching logical thinking skills. You should
learn programming for these skills even if you never intend to become a serious programmer.

The main goal of this book is to teach fundamental programming principles using C, one of the
most widely used programming languages in the world today. C is considered a ‘modern’
language even though its roots date back to the 1970s. Originally, C was designed for writing
‘systems’ programs—things like operating systems, editors, compilers, assemblers and
input/output utility programs. But, today, C is used for writing all kinds of applications
programs as well— wordprocessing programs, spreadsheet programs, database management
programs, accounting programs, games, educational software—the list is endless.

However, this book is more about teaching programming basics than it is about teaching C. We
discuss only those features and statements in C that are necessary to achieve our goal. Once
you learn the principles well, they can be applied to any language.

Chapter 1 gives an overview of the programming process. Chapter 2 describes the basic
building blocks needed to write programs. Chapter 3 explains how to write programs with the
simplest kind of logic—sequence logic. Chapter 4 shows how to write programs which can
make decisions. Chapter 5 explains the notion of ‘looping’ and how to use this powerful
programming idea to solve more interesting problems. Chapter 6 deals with the oft-neglected,
but important, topic of working with characters. Chapter 7 introduces functions—the key
concept needed for writing large programs. And Chapter 8 tackles the nemesis of many would-
be programmers—array processing.

The first step in becoming a good programmer is learning the syntax rules of the programming
language. This is the easy part and many people mistakenly believe that this makes them a
programmer. They get carried away by the cosmetics—they learn the features of a language
without learning how to use them to solve problems. Of course, you must learn some features.
Butitis far better to learn a few features and be able to use them to solve many problems rather
than learn many features but can’t use them to solve anything. For this reason, this book

iv

introduces a feature (an if statement, say) and then discusses many examples to illustrate how
the feature can be used to solve different problems.

This book is intended for anyone who is learning programming for the first time, regardless of
age or institution. The material has been taught successfully to students preparing for high-
school examinations in Computer Studies or Information Technology, students at college,
university and other tertiary-level institutions.

The presentation is based on the experience that many people have difficulty in learning
programming. To try and overcome this, we use an approach which provides clear examples,
detailed explanations of very basic concepts and numerous interesting problems (not just
artificial exercises whose only use is to illustrate some language feature).

While computer programming is essentially a mental activity and you can learn a fair amount
of programming from just reading the book, it is important that you “get your hands dirty” by
writing and running programs. One of life’s thrills is to write your first program and get it to
run successfully on a computer. Don’t miss out on it.

But do not stop there. The only way to learn programming well is to write programs to solve
new problems. The end-of-chapter exercises are a very rich source of problems, a result of the
author’s more than 40 years in the teaching of programming.

Thank you for taking the time to read this book. I hope your venture into programming is a
successful and enjoyable one.

Noel Kalicharan

Contents

1 First Concept

1.3 Data Types
1.4 Characters

1.5 Welcome to C Programming

1.5.1 Run the Program
1.5.2 Program Layout

1.6 Write Output with printf

1.6.2 Escape Sequences

1.7 Comments

1.8 Variables

Exercises 1

2.1 The C Alphabet

2.2 CTokens

2.2.2 Reserved Words

2.2.3 ldentifiers

2.3 Basic Data Types

2.4 Integers - int
2.4.1 Declare Variables

2.6 Strings

1

1.1 How a Computer Solves a Problem 3
1.1.1 Define the Problem 3
1.1.2 Analyze the Problem 4
1.1.3 Develop an Algorithm to Solve the Problem 4
1.1.4 Write the Program for the Algorithm 6
1.1.5 Test and Debug the Program 8
1.1.6 Document the Program 9
1.1.7 Maintain the Program 9
1.2 How a Computer Executes a Program 10
10

12

12

13

14

14

1.6.1 The Newline Character, \n 15
16

1.6.3 Print the Value of a Variable 17
18

18

20

2 O 4 L= = T £ oL 22
23

23

2.2.1 Spacing Within a Program 24
25

26

2.2.4 Some Naming Conventions 26
27

27

28

2.4.2 Integer Expressions 28
2.4.3 Precedence of Operators 29
2.4.4 Print an Integer Using a "Field Width" 30
2.5 Floating-point Numbers - float and double 32
2.5.1 Print double and float Variables 32
2.5.2 Assignment Between double and float 34
2.5.3 Floating-point Expressions 35
2.5.4 Expressions with Integer and Floating-point Values 35
2.5.5 Assign double/float to int 36
37

39

2.7 The Assignment Statement

vi

2.8 printf 40
Exercises 2 41
3 Programs With Sequence LOgiC........cccuurriirmiiiriiniisrs s 44
3.1 How to Read Data Supplied by a User 44
3.2 scanf 47
3.2.1 Read Data Into a float Variable 48
3.2.2 Read Data Into a double Variable 49

3.3 Read Strings 50
3.4 Examples 51
3.4.1 Problem 1 - Average 51
3.4.2 Problem 2 - Square 52
3.4.3 Problem 3 - Banking 53
3.4.4 Problem 4 - Tickets 56
Exercises 3 57
4 Programs With Selection Logic 60
4.1 Boolean Expressions 60
4.1.1 and, && 61
4.1.2 or, || 62
4.1.3 not, ! 62

4.2 The if Construct 63
4.2.1 Example - Find the Sum of Two Lengths 67

4.3 The if...else Construct 69
4.3.1 Calculate Pay 72

4.4 On Program Testing 74
4.5 Symbolic Constants in C 75
4.5.1 The #define Directive 75
4.5.2 Example - Symbolic Constants 76

4.6 More Examples 77
4.6.1 Printa Letter Grade 77
4.6.2 Classify Triangles 79
Exercises 4 80
5 Programs With Repetition Logic 84
5.1 The while Construct 84
5.1.1 Find the Highest Common Factor 89

5.2 Keep a Count 90
5.2.1 Find Average 91

5.3 Increment and Decrement Operators 92
5.4 Assignment Operators 93
5.5 Find Largest 94
5.6 Find Smallest 96
5.7 Read Data from a File 98
5.7.1 fscanf 100
5.7.2 Find Average of Numbers in a File 100

5.8 Send Output to a File 102
5.8.1 fprintf 102

vii

5.9
5.10

5.11
5.12
5.13
5.14

Exercises 5

6 Working With Character:

6.9
6.10
6.11

Exercises 6

7 Functions

7.1
7.2

7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

7.11

Exercises 7

Example - Payroll

The for Construct

5.10.1 The for Statementin C

5.10.2 A Bit of Aesthetics

Produce Multiplication Tables
Temperature Conversion Table

The Expressive Power of for

The do. . .while Statement

5.14.1 Highest Common Factor, HCF

5.14.2 Bank Interest

Character Sets

Character Constants and Values

The Type char
Characters in Arithmetic Expressions

6.4.1 Convert Between Uppercase and Lowercase

Read and Print Characters

Count Characters

Count Blanks in a Line of Data

Compare Characters
Read Characters From a File

Write Characters to a File

Convert Digit Characters to an Integer

skipLines

A Program with a Function
7.2.1 The Function Header

7.2.2 How a Function Gets Its Data

max... ..

Print the Day.

Highest Common Factor, HCF

7.5.1 Use HCF to Find LCM

factorial

7.6.1 Use factorial

7.6.2 Combinations

Job Charge

Calculate Pay

Find the Sum of Exact Divisors

7.9.1 Classify Numbers as Deficient, Perfect or Abundant

Some Character Functions

7.10.1 Position of a Letter in the Alphabet

Fetch the Next Integer

viii

104
109
111
115
116
119
121
122
123
124
125

130
130
131
132
132
133
134
140
141
142
143
145
148
150

152
153
154
155
156
157
160
162
164
164
167
169
171
171
172
172
173
175
177
179

8 Working With Arrays

8.1 Declare an Array
8.2 Store Values in an Array

8.3 Find Average and Differences from Average

8.4 Letter Frequency Count
8.5 Make Better Use of fopen

8.6 Pass an Array as an Argument to a Function

8.7 String - Array of Characters
8.7.1 Reverse the Characters in a String
8.8 Palindrome

8.8.1 A Better Palindrome Function

8.9 Array of Strings - Name of Day Revisited
8.10 A Flexible getstring Function

8.11 Geography Quiz Program

8.12 Find Largest in Array

8.13 Find Smallest in Array
8.14 A Voting Problem

Exercises 8

9 Sorting and Searching

9.1 Search Array - Sequential Search

9.2 Sort Array - Selection Sort
9.3 Sort Array - Insertion Sort

9.3.1 Insert an Element in Place

9.4 Sort Array of Strings

9.4.1 Variable-length Arrays

9.5 Sort Parallel Arrays
9.6 Search Sorted Array - Binary Search

9.7 Word Frequency Count

Exercises 9

Appendix A - Keywords in C
Appendix B - The ASCII character set

Appendix C - Representation of integers

Convert Decimal Numbers to Binary
Representation of Integers

Two’s Complement

Appendix D - How to get a C compiler

Index

182
183
185
187
190
192
194
196
199
202
204
206
208
210
213
215
216
220

223
223
225
231
236
237
237
239
240
242
247

249
250
251
251
252
252
254

255

